期刊文献+

正规形理论在电力系统稳定性研究中的应用(二)——电力系统主导不稳定平衡点上局部流形的计算 被引量:7

Application of normal form in study of power system stability Part 2:Cal culation of local manifolds on controlling unstable equilibrium point of el ectric power system
下载PDF
导出
摘要 应用正规形理论,采用文献[1]给出的两个不同方向的非线性变换,计算了用二元二次的非线性微分方程描述的一个故障后的单机无穷大系统在主导不稳定平衡点上的局部流形,从而得到了该电力系统的稳定边界;介绍了在不稳定平衡点上的局部稳定和不稳定流形对应于电力系统稳定性问题中的物理含义。算例的结果表明,两个不同方向的非线性变换都可以较好地近似原始系统的实际局部流形。 By applying normal form theory and adopting the two nonlinear transformations gi ven in paper [1] ,the local manifolds on the controlling unstable equilibrium points of a po st-fault single-generator power system is calculated and its stability boundar y is obtained.The system is normally described by binary quadratic differential equations.The physical meanings of stable and unstable manifolds on a controll ing unstable equilibrium point in electric power system are introduced.The cal culation results show that the local manifolds are right approximated by the tw o nonlinear transformations with different direction.
出处 《电力自动化设备》 EI CSCD 北大核心 2003年第7期1-4,18,共5页 Electric Power Automation Equipment
基金 高等学校博士学科点专项科研基金资助课题(RFDP-98069814)
关键词 正规形 非线性系统 常微分方程 局部流形 normal form nonlinear system ordinary differential equation local manifolds
  • 相关文献

参考文献5

  • 1李颖晖,张保会.正规形理论在电力系统稳定性研究中的应用(一)——从非线性系统到线性系统的映射[J].电力自动化设备,2003,23(6):1-5. 被引量:11
  • 2SALAM F M A, ARAPOSTATHIS A, VARAIYA P. Analytical expressions for the unstable manifold at equilibrium points in dynamical systems of differential equation[A].22nd IEEE Conference on Decision and Control[C].[s.l.]:Proceedings of 22nd Conference on Decision and Control, 1983. 1389-1392.
  • 3ZABORSZKY J,HUANG G,ZHENG B H. A counterexample on a theorem by Tsolas et al. and an independent result by Zaborszky[J]. IEEE Trans. on Automatic Control, 1988,33(3) :316-317.
  • 4CHIANG H D,WU F F,VARAIYA P. A BCU method for direct analysis of power system transient stability[J].IEEE Trans. on PAS, 1994,9(3) : 1194-1208.
  • 5WIGGINS S. Introduction to applied nonlinear dynamical systems and chaos [M]. New York: Springer-Verlag, 1982.

二级参考文献2

共引文献10

同被引文献50

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部