摘要
应用正规形理论,采用文献[1]给出的两个不同方向的非线性变换,计算了用二元二次的非线性微分方程描述的一个故障后的单机无穷大系统在主导不稳定平衡点上的局部流形,从而得到了该电力系统的稳定边界;介绍了在不稳定平衡点上的局部稳定和不稳定流形对应于电力系统稳定性问题中的物理含义。算例的结果表明,两个不同方向的非线性变换都可以较好地近似原始系统的实际局部流形。
By applying normal form theory and adopting the two nonlinear transformations gi ven in paper [1] ,the local manifolds on the controlling unstable equilibrium points of a po st-fault single-generator power system is calculated and its stability boundar y is obtained.The system is normally described by binary quadratic differential equations.The physical meanings of stable and unstable manifolds on a controll ing unstable equilibrium point in electric power system are introduced.The cal culation results show that the local manifolds are right approximated by the tw o nonlinear transformations with different direction.
出处
《电力自动化设备》
EI
CSCD
北大核心
2003年第7期1-4,18,共5页
Electric Power Automation Equipment
基金
高等学校博士学科点专项科研基金资助课题(RFDP-98069814)
关键词
正规形
非线性系统
常微分方程
局部流形
normal form
nonlinear system
ordinary differential equation
local manifolds