摘要
调和级数∑∞n=11n是发散的,而极限limn→∞[∑nk=11k-lnn]却是收敛的,通常将极限值limn→∞[∑nk=11k-lnn]称为欧拉常数γ。欧拉常数γ存在性的证明有多种方法,例如,可利用函数不等式、几何直观(平面图形面积)、数项级数的收敛性、积分中值定理等方法。在微积分学中,欧拉常数γ有许多应用,如求某些数列的极限,某些收敛数项级数的和等。
The harmonics series ∑∞n=11n is divergent ,but the limit limn→∞[∑nk=11k-lnn]is convergent ,and the limit is called Euler's constant γ .There are many methods to prove the existence of the γ ,e.g.,using function inequality, direct observation of the geometry, the convergence of the number series, and theorem of mean . There are many applications of the Euler's constant in the calculus, e.g., how to get the limit of some number sequences and how to get the sum of some number series.
出处
《江苏广播电视大学学报》
2003年第3期43-45,共3页
Journal of Jiangsu Radio & Television University
关键词
欧拉常数
极限
收敛
中值定理
级数和
Euler′s γ constant
limit
convergence
theorem of mean
sum of series