摘要
在传统的数值解法中,利用能量关系可以改进轨道半长径的精度,从而控制沿迹误差的增长,此即数值稳定化。积分步长的改变可以用时间变量的变换df=r^(3/2)ds解决。
The accuracy of orbital seminajor axis is improved by the energy relation so that the growth of the along-track error in traditional integrators can be controlled. This is called numerical stabilization. The change of step-size can be solved by the transformation of time variable:dt=r3/2ds.
出处
《计算物理》
CSCD
北大核心
1992年第A02期810-811,共2页
Chinese Journal of Computational Physics
关键词
天体运动理论
数值解
运动方程
allong-track error-numerical stabilization- change of step-size.