期刊文献+

用铁酸盐型磁性吸附剂去除偶氮染料酸性红B 被引量:16

Removal of azo dye Acid Red B(ARB) by magnetic ferrite adsorbents.
下载PDF
导出
摘要 通过对几种磁性铁酸盐型吸附剂MFe2O4(M=Fe,Mn,Cu)的表面特性及去除染料酸性红B(ARB)的吸附性能与催化氧化再生性能的研究,证明该类吸附剂能够有效地吸附去除水中的酸性红B,经磁分离,用H2O2/Fe2+体系可以同时氧化有机物与再生吸附剂,吸附剂可以循环使用.pH值对吸附能力有很大影响,对于MnFe2O4和Fe3O4,发生最大吸附的pH值范围在3.5~3.8,而对于CuFe2O4 pH值则在4.5~4.8时有最大吸附能力.CuFe2O4的吸附容量最大,MnFe2O4次之,Fe3O4最小;3种吸附剂的吸附等温线均符合Langmuir吸附模型.在发生吸附的pH值范围内,吸附剂吸附染料后其Zeta电位比吸附前均有明显降低.再生实验表明,3种吸附剂再生后,其比表面积明显增大,表面元素组成发生很大变化,其吸附能力也明显提高. Studies the surface character and the properties of adsorption and catalytic oxidization regeneration of several magnetic ferrites MFe2O4 (M=Fe, Mn, Cu) adsorbents. These adsorbents could remove effectively azodye Acid Red B (ARB) from water. After magnetic separation, H2O2+Fe2+ system could be used to oxidize organic substance and regenerate absorbents at the same time, thus the adsorbents could be used in cycle. The adsorption capacity was affected highly by pH value. The greatest adsorption of ARB on MnFe2O4 and Fe3O4 occurred at pH3.5~3.8; and that of CuFe2O4 occurred at pH4.5~4.8. The rank of their capacities is: CuFe2O4 > MnFe2O4 > Fe3O4; and their isotherms all coincide with the Langmuir model. In the pH value range of the adsorption occurrence, the zeta electric potential of adsorbent was lower markedly after adsorption of dye than that before; and after regeneration of these 3 adsorbents, their specific surface areas enlarged markedly, surface element composition changed greatly and adsorption capacity also enhanced markedly.
出处 《中国环境科学》 EI CAS CSSCI CSCD 北大核心 2003年第3期235-239,共5页 China Environmental Science
基金 中国科学院知识创新项目(KZCX2-409)
关键词 吸附 酸性红B 铁酸盐 磁分离 氧化再生 adsorption Acid Red B ferrite magnetic separation oxidization regeneration
  • 相关文献

参考文献8

  • 1Petrakis.L工业流体中微细颗粒的高梯度磁选[J].国外金属矿选矿,1982,6:28-38.
  • 2Gu B, Schmitt J, Chen Z, et al. Adsorption and desorption of natural organic matter on iron oxide: mechanisms and model [J].Environ. Sci. Technol., 1994,28:38-46.
  • 3Heijman S G J, Paasscn A M, Meer W G J. et al. Adsorptive removal of natural organic matter during drinking water treatment[J]. War. Sci. Technol., 1999,40(9):183-190.
  • 4Herrera F, Lopoz A, Mascolo G, et al. Catalytic combustion of orange Ⅱ on hematite-surface species responsible for the dye degradation [J]. Applied Catalysis B: Environ., 2001,29:147-162.
  • 5Van Velsen A F M, Van der Vos G, Boersma R, et al. High gradient magnetic separation technique for wastewater treatment[J]. Wat. Sci. Tech., 1991,24(10):195-203.
  • 6Safarik I, Safarikova M, Forsythe S J. The application of magnetic separations in applied microbiology [J]. J. Appl.Bacteriol., 1995,78:575-581.
  • 7Bandara J, Mielczarski J A, Kiwi J. Molecular mechanism of surface recognition azo dyes degradation on Fe, Ti and Al oxides through metal sulfonate complexes [J]. Langmuir, 1999,15(22):7670-7679.
  • 8Kwan W, Voelker B M. Decomposition of hydrogen peroxide and organic compounds in the presence of dissovled iron and ferdhydrite [J]. Environ. Sci. Technol., 2002,36:1467-1476.

同被引文献223

引证文献16

二级引证文献118

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部