摘要
本文提出了一维分形的分维估计方法—局部方差累积法。通过对已知分维数的Weiers trass函数和分数布朗运动的检验,估计的分维数与理论值有很好的吻合。最后,利用蒙特卡罗方法模拟了高期分布随机粗糙面,并对它们的分维给予了估计。
In this paper we present a new method -local accumulated deviation method for evaluating the fractal dimension of curves or one-dimensional (1D) surfaces. Our method is tested on various types of curves for Weierstrass- Mandelbrot fractal function and fractal Brownian motion with known fractal dimension. The results are good agreement with the theoritical values. Finally, using Monte -Carlo method, we simulated the randam rough (1D) surfaces with Gauss spectrum, and the new method is applied to data from simulating surfaces.
出处
《计算物理》
CSCD
北大核心
1992年第A02期687-692,共6页
Chinese Journal of Computational Physics
关键词
分形
分维
局部方差累积
估计
fractal, fractal dimension, local accumulated deviation method.