期刊文献+

多小波子空间上的单小波表示 被引量:1

Representation for Multiwavelets Subspaces by the Uni-Wavelet
原文传递
导出
摘要 本文在较弱的条件下,建立了2重多小波子空间与单小波子空间的关系.即由2重多小波构造出单小波.一方面,这种单小波的平移伸缩与2重多小波的平移伸缩生成的子空间是完全相同的;另一方面,它具有插值性.因此通过构造出的单小波建立了多小波子空间上的Shannon型采样定理. Under weak hypotheses, we establish the relation between multiwavelets subspaces with multiplicity 2 and uni-wavelet subspaces, i.e., the uni-wavelet is constructed by multiwavelets with multiplicity 2. On the one hand, the subspace generated by translates and dilations of the uni-wavelet is the same as the subspace generated by multiwavelets with multiplicity 2; on the other hand, the uni-wavelet also possesses the interpolatory property. Based on uni-wavelet generated by our method, the Shan-non'type sampling theorem on the multiwavelets subspace is presented.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2003年第4期691-696,共6页 Acta Mathematica Sinica:Chinese Series
关键词 单小波 2重多小波 RIESZ基 Shannon型采样定理 插值 Uni-wavelet Multiwavelet with multiplicity 2 Riesz basis Shannon's type sampling theorem Interpolatory
  • 相关文献

参考文献7

  • 1Geronimo J., Hardin D. P., Massopust P., Fractal functions and wavelet expansions based on several scaling functions, J. Approz Theory, 1994, 78: 373-401.
  • 2Chui C. K., Lian J. A., A study on orthonormal multiwavelets, Appl. Numer Math., 1996, 20(1): 273-298.
  • 3Goodman T.N.T,Lee S.L,Wavelets of multiplicity r,Trans.Amer.Math.Soc,1994,342(1):307-324.
  • 4Donovan G. C., Geronimo J., Hardin D. P., Construction of orthogonal wavelets using fractal interpolution functions, SIAM J. Math. Anal., 1996, 27(4): 1158-1192.
  • 5Chen Z. Y., Micchelli C. A., Xu Y. S., A construction of interpolating wavelets on invariant sets, Math. Comp.,1999, 68: 1569-1587.
  • 6Daubechies I., Orthoronmal bases of compactly supported wavelets, Comm. Pure Appl. Math., 1988, 41:909-996.
  • 7Walter G., A sampling theorem for wawlet subspace, IEEE Trans. Inform Theory, 1992, 38(2): 881-884.

同被引文献9

  • 1Unser M.Sampling-50 years after Shannon[J].Proceedings of IEEE,2000,88(4):569~587.
  • 2Walter G G.A sampling theorem for wavelet subspaces[J].IEEE Trans Inform Theory,1992,38(2):881~884.
  • 3Xia X G.On sampling theorem,wavelet,and wavelet transforms[J].IEEE Trans Signal Processing,1993,41 (12):3524 ~3535.
  • 4Geronimo J.,Hardin D.P.,Massopust P.,Fractal functions and wavelet expansions based on several scaling functions[J].J.Approx Theory,1994,78(3):373~401.
  • 5Selesnick I W.Interpolating multiwavelet bases and the sampling theorem[J].IEEE Trans Signal Processing,1999,47(6):1615 ~ 1621.
  • 6Daubechies I.,Orthoronmal bases of compactly supported wavelets,Comm[J].Pure Appl.Math.,1998,41:909 ~ 996.
  • 7Y.Meyer,"Ondelette et operateurs I"[R].Hermann,Paris,1990.
  • 8贾彩燕,高协平.多小波空间的一般取样定理[J].中国科学(E辑),2002,32(6):838-845. 被引量:4
  • 9杨守志,程正兴,杨建伟.r重小波子空间上的Shannon型均匀和非均匀采样定理[J].工程数学学报,2003,20(2):1-6. 被引量:5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部