期刊文献+

一类非线性m-点边值问题正解的存在性 被引量:24

Existence of Positive Solutions for a Nonlinear m-Point Boundary Value Problem
原文传递
导出
摘要 设α∈C[0,1],b∈C([0,1],(-∞,0)).设φ(t)为线性边值问题 u″+a(t)u′+b(t)u=0, u′(0)=0,u(1)=1的唯一正解.本文研究非线性二阶常微分方程m-点边值问题 u″+a(t)u′+b(t)u+h(t)f(u)=0, u′(0)=0,u(1)-sum from i=1 to(m-2)((a_i)u(ξ_i))=0正解的存在性.其中ξ_i∈(0,1),a_i∈(0,∞)为满足∑_(i=1)^(m-2)a_iφ_1(ξ_i)<1的常数,i∈{1,…,m-2}.通过运用锥上的不动点定理,在f超线性增长或次线性增长的前提下证明了正解的存在性结果. Let a ∈ C[0,1], b ∈ C([0,1],(-∞,0)). Let φ1(t) be the unique positive solution of the linear problem u' + a(t)u' + b(t)u = 0, u'(0) = 0, u(1) = 1. We study the existence of positive solutions for the nonlinear m-point boundary value problem u' + a(t)u' + b(t)u + h(t)f(u) = 0, where & ∈ (0,1) and αi ∈ (0, ∞) are given constants satisfying i ∈{1,...,m - 2}. We show the existence of positive solutions if f is either superlinear or sublinear by applying the fixed point theorem in cones.
作者 马如云
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2003年第4期785-794,共10页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金(10271095) GG-110-10736-1003 NWNU-KJGXGG-212 教育部科学技术研究重点资助项目及优秀青年教师资助计划
关键词 多点边值问题 正解 不动点定理 Multi-point boundary value problems Positive solutions Fixed point theorem
  • 相关文献

参考文献8

  • 1Ma R. Y., Positive solutions for second-order three-point boundary-value problems, Applied Mathematics Letters, 2001, 14: 1-5.
  • 2Guo D. J., Lakshmikantham V., Nonlinear problems in abstract cones, San Diego: Academic Press. 1988.
  • 3Dang H., Schmitt K., Existence of positive solutions for semilinear elliptic equations in annular domains,Differential and Integral Equations, 1994, 7(3): 747-758.
  • 4Wang H. Y., On the existence of positive solutions for semilinear elliptic equations in the annulus, J. Differential Equations. 1994. 109: 1-7.
  • 5II'in V. tk., Moiseev El I., Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator in its differential and finite difference aspects, Differential Equations. 1987. 23(7): 803-810.
  • 6Gupta C. P., Solvability of a three-point nonlinear boundary value problem for a second order ordinary differential equation, J. Math. Anal. Appl.. 1992. 168: 540-551.
  • 7Gupta C. P., Ntouyas S. K. and Tsamatos P. Ch., Solvability of an m-point boundary value problem for second order ordinary differential equations, J. Math. Anal. Appl., 1995. 189: 575-584.
  • 8Feng W., Webb J. R. L., Solvability of m-point boundary value problems with nonlinear growth, J. Math.Anal. Appl., 1997, 212: 467-480.

同被引文献127

引证文献24

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部