期刊文献+

基于混沌预测的模糊神经网络控制器设计及应用 被引量:4

Design and Application of Fuzzy Neural Network Controller Based on Chaotic Forecast
下载PDF
导出
摘要 由于混沌时间序列内部确定的规律性 ,其重构出混沌吸引子的相空间具有高精度短期预测性。根据非线性、大时滞系统的时间序列重构相空间 ,计算相空间的最大Lyapunov指数、饱和嵌入维数和可预报尺度 ,并以此为指导 ,对系统作高精度预测。在此基础上 ,又设计了遗传算法优化的模糊神经网络预测控制器 ,实现了对非线性、大时滞系统高精度的自适应控制。将该控制应用在锅炉过热汽温控制中 ,仿真表明该控制的有效性、准确性和鲁棒性。 Because of the intrinsic reqularits of the chaotic time series, theed phase space of the reconstruct chaotic attractors features high precision short term forecast. Therefore, in order to realize the adaptive control of the nonlinear with big time systemlag, first, the phase space of the chaotic attractors is reconstructed, system's embed dimension, the maximal Lyapunov exponent and forecast measure are calculated by the time series of the nonlinear system with big time lay in this paper, lastly, high precision short term forecast is performed for the system. On this basis, a fuzzy neural network forecast controller optimized by genetic algorithm is designed, thus, high precision adaptive control on the nonlinear system with big time lay is realized. The controller is applied to the overheat steam temperature system, the simulate result proves the controller's validity, veracity and robustness.\;
出处 《系统工程与电子技术》 EI CSCD 北大核心 2003年第6期704-706,766,共4页 Systems Engineering and Electronics
基金 国家自然科学基金 ( 60 10 2 0 0 2 ) 河北省基金 ( 60 112 2 4) 霍英东基金 ( 810 5 7)资助课题
关键词 混沌预测 混沌吸引子 模糊神经网络 LYAPUNOV指数 鲁棒性 Chaos forecast Chaotic attractors Fuzzy neural network Lyapunov exponent Robustness
  • 相关文献

参考文献6

二级参考文献20

共引文献57

同被引文献26

  • 1章治,章逸.基于神经网络和混合遗传算法的优化控制研究[J].微计算机信息,2007(26):282-283. 被引量:1
  • 2董剑锋,侯媛彬,熊猛.遗传算法在求神经网络权值方面的应用[J].科技咨询导报,2007(27):168-169. 被引量:2
  • 3张志君,于海晨.基于神经网络的广义预测控制及在化学反应器中的应用[C]//第23届中国控制会议论文集.上海:华东理工大学出版社,2004:896-899.
  • 4宋宜斌,王培进.预测控制中的神经网络模型及其应用研究[C]//第23届中国控制会议论文集.上海:华东理工大学出版社,2004:687-970.
  • 5LIAN Rueyjing, LIN Balfu, HUANG Jyunhan. A grey prediction fuzzy controller for constant cutting force in turning[ J ].International Journal of Machine Tools and Manufacture, 2005, 45 (9) : 1 047-1 056.
  • 6Haber R E, Alique J R, Alique A, et al. Controlling a complex electromeehanical process on the basis of a neurofuzzy approach[J]. Future Generation Computer Systems, 2005, 21(7) : 1 083-1 095.
  • 7Bevrani H,Al-Basri F.Adaptive fuzzy gain scheduling for load frequency control[J].IEEE Trans on Power Systems,1999,14 (1):145-150.
  • 8Lian R J,Lin B F,Huang J H.A grey prediction fuzzy controller for constant cutting force in turning[J].International Journal of Machine Tools and Manufacture,2005,45(9):1047-1056.
  • 9Haber R E,Alique J R,Alique A.Controlling a complex electromechanical process on the basis of a neurofuzzy approach [J].Future Generation Computer Systems,2005,21(7):1083-1095.
  • 10Akalin G.Gu¨c Sistemlerinde Yu¨k-Frekans Kontrolu¨[D].Kocaeli University,India,1999.

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部