期刊文献+

奇异线性二次型微分鞍点对策的小波逼近解法 被引量:2

Wavelet Approximation Method for Linear-Quadratic Differential Saddle-Point Game in Singular Systems
下载PDF
导出
摘要 研究广义状态系统中线性二次型微分对策鞍点策略的数值求解问题。基于小波多尺度多分辨逼近特性 ,提出了一种数值求解新方法。该法基于Daubechies小波的优良性质 ,特别是将Daubechies小波基的积分运算矩阵、乘积矩阵和快速离散小波变换系数矩阵应用于原问题的主要方程 ,将原问题转化为矩阵代数优化问题 ,避免直接计算耦合Riccati微分方程。算法简洁明了 ,适合于计算机求解。实例计算结果显示 。 This paper studies the numerical problem of the saddle point strategy for linear quadratic differential game in generalized state systems. A new numerical approximation solution method via Daubechies wavelets is proposed. The method is based upon some useful properties of Daubechies wavelets, a special operation matrix of integrate,product and coefficient matrices are applied to the main equation such that the problem is changed into an algebraic optimal problem,which avoids computing a pair of cross coupled Riccati differential equations directly. The procedure is simple and clear,and suit to calculate for computer. An example is illustrated, the result shows that the method is rational and effective.\;
作者 张成科
出处 《系统工程与电子技术》 EI CSCD 北大核心 2003年第6期707-711,共5页 Systems Engineering and Electronics
基金 广东省科技计划资助课题 (C10 5 10 )
关键词 广义状态系统 微分对策 鞍点策略 小波分析 Generalized state systems Differential game Saddle point strategy Wavelets analysis
  • 相关文献

参考文献9

  • 1顾兴源,陈文华.基于对策论的鲁棒输出反馈控制器设计[J].信息与控制,1991,20(4):16-20. 被引量:3
  • 2吴汉生.一类定量微分对策理论中最优策略的算法及其收敛性[J].自动化学报,1992,18(2):143-150. 被引量:3
  • 3Basar T, Olsder G J. Dynamic Noncooperative Game Theory[M].London,Academic Press, 1982.
  • 4Limebeer D J N, Anderson B D O, Hendel B. A Nash Game Approach to Mixed H2/H∞ Control[J]. IEEE Trans. Auto. Contr., 1994, 39(1): 69-82.
  • 5Limebeer D J N. A Game Theory Approach to Digital Robust Control[C]. Proc. of 28th IEEE Conference on Decision and Control, USA,1989. 234-246.
  • 6Basar T. Minimax Control for the LTI Plant with I' - Bound Disturbance[C]. Proc. of 11th IFAC World Congress, USSR, 1990: 564-572.
  • 7Li S, Basar T. Distributed Algorithms for the Computation of Noncooperative Equilibria[J]. Automatica, 1987, 23(4) : 523 -533.
  • 8Daubecheise I. Orthonormal Bases of Compactly Supported Wavelets[J].Comm. Pure. And Appl. Math., 1988(41): 909-996.
  • 9Xu H, Mizukami K. Linear-Quadratic Zero-Sum Differential Games for Generalized State Space Systems[J]. IEEE Trans. AC,1994, 39(1) : 143 - 147.

二级参考文献2

  • 1Li S,Automatica,1987年,23卷,4期,523页
  • 2张嗣瀛,自动化学报,1980年,6卷,2期,121页

共引文献2

同被引文献17

  • 1Simaan.M, Cruz.Jr, J.B. On the Stackelberg Strategy in Non-Zero sum Games[J].J.Optimization Theory and Applications,1991,(161).
  • 2T.Basar, G J.Olsder. Dynamic Non-Cooperative Game Theory[M]. New York:Academic Press,1991.
  • 3H.Xu, K.Mizukami. Linear -Quadratic Zero -Sum Differential Games for Generalized State Space Systems [J].IEEE.Trans.AC,1994,39(1).
  • 4K.Mizukami, H.Xu. Closed-loop Stackelberg Strategies for Linear- quadratic Descriptor Systems[J].J.Optimization Theory and Applications, 1992,(74).
  • 5Muneomi Sagara, H.Mukaidani. Stochastic Nash Games with State-dependent Noise[J].Proceedings of SICE Annum Conference, Sept.17-20, Kagawa University, Japan,2007.
  • 6Y.P.Zheng, T.Basar. Existence and Derivation of Optimal Affine Incentive Scheme for Stackelberg Games with Partial Information: a Geometric Approach[J].Int.J.Control,1982,35(6).
  • 7F.A.Faruqi. On the Algebraic Structure of Quadratic and Bilinear dynamical Systems[J].Applied Mathematics and Computation,2004, 18(2).
  • 8H.Bounit. Comments on the Feedback Stabilization for Bilinear control Systems[J].Applied Mathematics Letters,2003,16(6).
  • 9R.R.Mohler, W.J.Kolodzie. An Overview of Bilinear System Theory and Applications[J].IEEE Trans. SMC,1980,10(10).
  • 10W. Mceneaney. A Robust Control Framework for Option Pricing [J].Mathematics of Operations Research[J].1997,22(1).

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部