期刊文献+

区间线性规划的标准型及其求解 被引量:39

Standard Form of Interval Linear Programming and Its Solution
下载PDF
导出
摘要 定义区间线性规划的标准型 ,给出一种反映决策者满意度的区间数序关系 ,基于此将区间不等式约束转化为确定型约束 ;讨论区间等式约束的含义并将其化为确定型不等式约束。在此基础上将区间线性规划转化为一个确定型线性规划并进行求解。最后给出一个算例。 A standard form of interval linear programming was first defined. Then an order relation between interval numbers was proposed, by which inequality constraints of IvLP could be transformed into constraints with exact coefficients. In the following equality constraints of IvLP were studied and were converted into inequality constraints with exact coefficients. As a result an IvLP was transformed into an exact linear programming and could be solved. Finally an example was given.
出处 《系统工程》 CSCD 北大核心 2003年第3期79-82,共4页 Systems Engineering
关键词 区间线性规划 标准型 运筹学 序关系 目标函数 Interval Linear Programming(IvLP) Standard Form Interval Number Order Relation Exact Linear Programming
  • 相关文献

参考文献7

  • 1刘新旺,达庆利.一种区间数线性规划的满意解[J].系统工程学报,1999,14(2):123-128. 被引量:46
  • 2Ishibuchi H,Tanaka H. Multiobjective programming in optimization of the interval objective function[J]. European Journal of Operational Research, 1990,48 : 219 - 225.
  • 3Chanas S,Kuchta D. Multiobjective programming in optimization of the interval objective functions -- A generalized approach[J]. European Journal of Operational Research ,1996,94 : 594- 598.
  • 4Tong S. Interval number and fuzzy number linear programming[J]. Fuzzy Sets and Systems, 1994,66: 301-306.
  • 5Chinneck J W, Ramadan K. Linear programming with interval coefficients[J]. Journal of the Operational Research Society, 2000,51 : 209- 220.
  • 6Atanu S,Tapan K P. On comparing interval numbers[J]. European Journal of Operational Research, 2000,127: 28-43.
  • 7Atanu S, Tapan K P, Debjani C. Interpretation of inequality constraints involving interval coefficients and a solution to interval linear programming[J]. Fuzzy Sets and Systems, 2001,119:129- 138.

二级参考文献1

  • 1Tong S,Fuzzy Sets Systems,1994年,66卷,301页

共引文献45

同被引文献300

引证文献39

二级引证文献156

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部