期刊文献+

求偶图最大匹配的矩阵算法 被引量:2

The Matrix Algorithm of Search a Maximum Matching in Bipartite Graph
下载PDF
导出
摘要 深入研究了偶图与其简化邻接矩阵之间的关系 ,提出了 (0 ,1 ) -矩阵的无关元对角形概念 ,利用此概念给出了定理“任一 (0 ,1 ) -矩阵的项秩与线秩相等”的一种直接简单证明 ,得到了判断 (0 ,1 ) -矩阵的无关元集为最大无关元集的充要条件。最后给出了寻找偶图最大匹配的算法———矩阵算法 。 In this paper, bipartite graph and its reduced adjacency matrix are studied, and the concept of diagonal matrix of an irrelative element set is given. We give a short proof of the theorem: in a (0,1)-matrix the term rank equals the line rank. The theorem is obtained: in a (0,1)-matrix, an irrelative element set F is maximum irrelative element set if and only if that there is a line cover Γ with |Γ|=|F|. In the end, the matrix algorithm of search a maximum matching in bipartite graph is given.
出处 《北京建筑工程学院学报》 2003年第2期75-78,共4页 Journal of Beijing Institute of Civil Engineering and Architecture
关键词 偶图 匹配 矩阵算法 无关元集 计算机 bipartite graph (0,1)-matrix diagonal matrix of an irrelative element set maximum matching
  • 相关文献

参考文献5

  • 1柳柏濂.组合矩阵论[M].北京:科学出版社,1998..
  • 2D. Koenig, Graphs and matrices ( in Hungarian) [ J ]. Mat. Fiz.Lapok, 1931, 38: 116-119.
  • 3Romeo Rizzi, A Short Proof of Koenig's Matching Theorem[J ].J. Graph Theory, 2000,33:138 - 139.
  • 4D. Koenig, Theorie der Endlichen und Unendlichen Grahen[ M ].New york, Chelsea, 1950.
  • 5J. A. Bondy mad U. S. Murty, Graph Theory with applications[M]. American Elsevier, New York, 1996.

共引文献14

同被引文献22

  • 1钟声,云敏,焦安全.求解单圈多部图的匹配算法[J].广西师范大学学报(自然科学版),2007,25(2):202-205. 被引量:5
  • 2耿素云,屈婉玲,张立昂.离散数学[M].北京:清华大学出版社,2008.
  • 3Umeyama S. An eigendecomposition approach to weighted graph matching problem[ J ]. IEEE Trans Patt Anal Mach Intel, 1988,10(5) :695 -703.
  • 4Almohamad H A, Duffuaa S O. A linear programming approach for the weighted graph matching problem [ J ]. IEEE Trans Patt Anal Mach Intel,1993,15(5) :522 -525:.
  • 5Gold S, Rangarian A. A graduated assignment algorithm for graph matching[ J]. IEEE Trans Patt Anal Mach Intel, 1996,18 (4) : 337 - 388.
  • 6Zavlanos M M, Pappas G J. A dynamical systems approach to weighted graph matching[J]. Automatica,2008,44(11) :2817 -2824.
  • 7Yuan J J. Induced matching extendable graph [ J ]. J Graph Theo, 1998,28:203 - 313.
  • 8Rizzi R. A short proof of Ktnig' s Matching Theorem[J]. J Graph Theo,2000,33:138-139.
  • 9田晓明,朱绍文.关于元向二部图最大匹配集矩阵算法的研究[J].湛江师范学院学报:自然科学版,2000,21(2):69-73.
  • 10Lovasz L, Plummer M. Matching Theory[ M ]. New York : North - Holland, 1980.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部