期刊文献+

三维裂纹扩展轨迹的边界元数值模拟 被引量:8

Boundary Element Numerical Simulation of Three-Dimensional Crack-Growth Trajectory
下载PDF
导出
摘要 提出了一种对三维裂纹扩展轨迹进行数值模拟的新方法。采用一种新的具有C1连续性、高精度的单节点二次边界单元 ,使边界元 (BEM )的分析效率和裂纹张开位移 (COD)、应力强度因子(SIF)的精度大大提高。采用裂纹张开位移全场拟合法 (GCDFP)求出裂纹面前缘的SIF ,所得到的SIF达到与所用的COD资料同样的精度。使用Paris公式求出裂纹前缘各点的裂纹扩展增量 ,并用三次B样条函数对这些增量进行拟合 ,得到新的光滑裂纹前缘。根据以上思想方法 ,开发了具有较高的计算效率和精度的数值模拟软件。此软件可以自动跟踪裂纹扩展 ,得到裂纹扩展的轨迹。运用该软件对椭圆和矩形裂纹的扩展轨迹进行了数值模拟。其结果与理论上的预言完全一致 ,裂纹最后都趋于一个圆裂纹 。 A new method of numericl simulation of three dimensional planar crack growth trajectory is proposed in this article. The boundary element method (BEM) is applied to compute crack open displacement (COD). Because of unit area being resolved or linear integrated, the efficiency and precision of boundary element analysis are improved significantly. A global crack line displacement fitting procedure (GCDFP) for computing stress intensity factors (SIF) is developed. The precision of SIF is the same as the corresponding COD data. The crack growth increment of crack line is computed by Paris formula followed by fitting using three time B spline function. Further more, the software is developed to trace automatically the crack growth and to obtain reasonable continuous crack growth trajectory. The results of numerical simulation of crack growth of ellipse and rectangle by the software computation indicate that crack line tend to grow into a circle, this is consistent with the theoretic prediction.
出处 《应用力学学报》 CAS CSCD 北大核心 2003年第2期49-53,共5页 Chinese Journal of Applied Mechanics
基金 北京市自然科学基金 (项目编号 :8982 0 0 6)资助 工程抗震与结构整治北京市重点实验室的开放项目
关键词 三维裂纹扩展轨迹 数值模拟 边界元 应力强度因子 裂纹张开位移全场拟合法 B-样条函数 three dimensional crack growth trajectory, numerical simulation, boundary element, stress intensity factor, B spline function.
  • 相关文献

参考文献11

  • 1詹福良 杜三虎 蒋和洋 滕春凯 李世愚 黎在良.裂纹扩展轨迹的边界元模拟与实验研究[J].固体力学学报,2002,.
  • 2彭述平,黎在良.一种新边界积分方程在三维裂纹分析中的应用[J].华中理工大学学报,1997,25(9):104-106. 被引量:1
  • 3Smith R A and Cooper J F. A finite element model for the shape development of irregular planar cracks[J]. Int J Pres Ves and Piping,1989, 36(4) :315-326.
  • 4Sumi Y, Yang C, Hayashi S. Morphological aspects of fatigue crack propagation: Part I. Computational Procedure[J]. Int J Fracture,1996, 82:205--220.
  • 5Sumi Y, Wang Z N. A finite - element simulation method for a system of growing cracks in a heterogeneous material[J]. Mechanics of Materials, 1998, 28:197--206.
  • 6Ingraffea A R, Blandford G, and Ligget J A. Automatic modeling of mixed-mode fatigue and quasi- static crack propagation using the boundary element method[A]. 14th Nail Symp on Fracture[C],1987, ASTM STP 791 : 1407-- 1426.
  • 7Portela A, Aliabadi M H and Rcoke D P. Dual boundary element incremental analysis of crack propagation[J ]. Int J Comput Struct,1993, 46:237-247.
  • 8Mi Y, and Aliabadi M H. Three- dimensional crack growth simulation using BEM[J]. Int J Compute Struct, 1994, 52:871-837.
  • 9Mi Y, and Aliabadi M H. Automatic procedure for mixed - mode crack growth analysis[J]. Commun Numeric Methods Eng, 1995,11 : 167-- 177.
  • 10Li Z L and Li Z J. Computation of stress intensity factors by using global crack-line displacement fitting procedure [ J ]. International Journal of Fracture, 1999, 99(4):259--279.

二级参考文献1

  • 1Xu Yonglin,Acta Mech Solida Sin,1996年,3卷,216页

共引文献1

同被引文献71

引证文献8

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部