期刊文献+

一类强非线性机械基础系统的亚谐振动解析解 被引量:4

Analytical Periodical Solution of Subharmonic Resonance in a Strongly Nonlinear System of Machine Foundations
下载PDF
导出
摘要 建立了机械基础动力系统的强非线性动力学模型 ,利用能量法对该系统的周期解进行了解析研究 ,确定了系统动态参数满足周期解的条件、系统的周期解以及解的稳定性判别式。发现了亚谐振动 ,并给出了系统在满足周期解条件下的一组参数对应的主振动、1 / 3亚谐振动和 1 / 5亚谐振动。最后利用数值积分方法计算了系统在给定条件下的主振动及亚谐振动解 。 A strongly nonlinear dynamicl model of machine foundation system is presented, and the analytical research on the periodic solution of the system is developed using the energy method in this paper. The condition of the periodic solution which must be satisfied by the dynamical parameters, the periodic solution of the system and the discriminant of the stability are suggested. Besides main resonance, the subharmonic resonance in the system is detected, and a set of periodic solution of main and 1/3 & 1/5 subharmonic resonance under the periodic condition are given as examples. Finally the periodic solution of the system is investigated with the numerical method, and the precision of analytical method is compared with numerical one.
出处 《应用力学学报》 CAS CSCD 北大核心 2003年第2期140-144,共5页 Chinese Journal of Applied Mechanics
关键词 机械基础动力系统 强非线性动力学模型 亚谐振动 能量法 周期解 数值积分 machine foundations, strong nonlinearity, subharmonic resonance.
  • 相关文献

参考文献3

二级参考文献7

  • 1申世强,第七届全国土力学及基础工程学术会议论文集,1994年
  • 2徐攸在,第六届全国土力学及基础工程学术会议论文集,1991年
  • 3吴世明,土动力学原理,1984年
  • 4匿名著者,1980年
  • 5Hu H Y,Nonlinear Dynamics,1992年,15卷,4期,311页
  • 6Jin D P,Acta Mech Sin,1992年,13卷,4期,185页
  • 7Hu H Y,J Sound Vibration,1992年,209卷,2期,358页

共引文献11

同被引文献23

  • 1程友良,戴世强.一类强非线性振动方程的渐近解[J].上海工业大学学报,1994,15(1):27-33. 被引量:1
  • 2徐兆,詹杰民.强非线性振子的受迫振动[J].中山大学学报(自然科学版),1995,34(2):1-6. 被引量:7
  • 3陈龙珠,叶贵如,陈胜立.基础非线性振动的实用解析分析[J].振动工程学报,1996,9(3):292-296. 被引量:9
  • 4唐驾时,尹小波.一类强非线性振动系统的分叉[J].力学学报,1996,28(3):363-369. 被引量:24
  • 5S Bravo Yuste and J Diaz Bejarano.Improvement of a Krylov-Bogoliubov method that uses Jacobi elliptic functions[J].Journal of Sound and Vibration,1990,139(1):151~163.
  • 6S Bravo Yuste.Comments on the method of harmonic balance in which Jacobi elliptic functions are used[J].Journal of Sound and Vibration,1991,145(3):381~390.
  • 7Burton T D.Non-linear oscillator limit cycle analysis using a time transformation approach[J].International Journal of Non-Linear Mechanics,1982,17(1):7~19.
  • 8Cheung Y K,Chen S H and Lau S L.Application of the incremental harmonic balance method to cubic non-linearity systems[J].Journal of Sound and Vibration,1990,140(2):273~286.
  • 9Cheung Y K,Chen S H,Lau S L.A modified Lindstedt-Poincaré method for certain strongly non-linear oscillators[J].International Journal of Non-Linear Mechanics,1991,26(3~4):367~378.
  • 10Lau S L,Cheung Y K.Amplitude incremental variational principle for nonlinear vibration of elastic system[J].ASME Journal of Applied Mechanics,1981,48(4):959~964.

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部