期刊文献+

利用遗传神经网络识别水淹层 被引量:5

Application of genetic neural network to waterflooded zone identification
下载PDF
导出
摘要 胜坨油田水淹非常严重,有效的识别水淹层并定量地划分水淹级别,对油田开发非常重要。利用遗传神经网络实现了水淹层的自动识别。根据关键井的统计数据,首先建立标准的流体测井相数据库,合理地划分储层水淹级别,然后利用遗传神经网络对已知样本进行训练。遗传神经网络比简单的BP神经网络鲁棒性强,收敛速度快。用训练好的遗传神经网络对胜坨油田的水淹情况进行研究。 abstract It is very important for oilfield development to identify waterflooded zones effectively and classify its level quantitatively because of seriously water out in Shengtuo oilfield. Automatic identification of wateredout zones is realized by applying genetic neural network. According to the statistic data of the key wells, at first, a standard database of fluid logging facies is constructed, and wateredout level of reservoirs is classified rationally, then known samples are trained using genetic neural network. Genetic neural network is more robust and easily convergent than simple BP neural network. A trained genetic neural network is powerful in the study of the waterflooded zones in Shengtuo oilfield.
作者 刘红歧 唐洪
出处 《油气地质与采收率》 CAS CSCD 2003年第3期50-52,共3页 Petroleum Geology and Recovery Efficiency
关键词 遗传算法 神经网络 水淹层 胜坨油田 油田开发 测井 logging interpretation, waterflooded zone, genetic algorithm, neural network, Shengtuo oilfield
  • 相关文献

参考文献4

二级参考文献3

共引文献130

同被引文献57

引证文献5

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部