期刊文献+

一类非线性系统的滑模振动主动控制 被引量:2

Active Sliding Mode Control of Vibration in a Class of Nonlinear System
下载PDF
导出
摘要 基于滑模控制理论 ,研究了一类外激励作用下多自由度非线性系统的振动主动控制问题。利用滑模可达条件建立了滑模控制律。为解决外激励不可测所带来的控制律的不确定性问题 ,本文利用已知的外激励的上界这一参数消除了控制律的不确定性。利用 H∞最优控制论设计了切换函数。数值仿真结果表明 ,本文给出的控制方法能明显减小振动的幅值。特别是在外激励满足所谓的匹配条件下 。 Based on the theory of sliding mode control, active control of vibration in a class of nonlinear system with multi degrees of freedom under disturbance forces is studied. Sliding control law is derived from reaching conditions of sliding mode. The estimated upper bounds on magnitude of disturbance forces are adopted to eliminate uncertainties of control law due to unmeasurable disturbance forces. Sliding surface is designed by H ∞ optimal control theory. Simulational results show that vibration amplitudes of the controlled and uncontrolled degrees of freedom can be greatly reduced by using the proposed control strategy, especially in the case that disturbance forces meet the matching condition.
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2003年第3期308-312,共5页 Journal of Nanjing University of Aeronautics & Astronautics
关键词 非线性系统 滑模控制 振动主动控制 切换函数 机翼 active control of vibration sliding control nonlinear system
  • 相关文献

参考文献9

  • 1高为炳.变结构控制的理论及设计方法[M].北京科学出版社,1998..
  • 2王丰尧.滑模变结构控制[M].北京:机械工业出版社,1998..
  • 3琼荟.变结构控制系统[M].重庆:重庆大学出版社,1997.2-13.
  • 4Han H C. A new method for variable structure control system design: a linear matrix inequality approach [J]. Automatica, 1997, 33(11).2089-2092.
  • 5Yueming Z,Sahjendra N S. Output feedback variable structure adaptive control of an aeroelastic system[R], AIAA Paper. 1998, 522-531.
  • 6Lewis A S, Sliding control of a flexible rotor via magnetic bearings: theory and experiments [D].PA: The Pennsylvania State University, 1994.
  • 7Sinha A, Kao C K. Independent modal sliding mode control of vibration in flexible structures[J]. Journal of Sound and Vibration, 1991,17(2) : 352-358.
  • 8Sinha A, Kao C K, Couple modal sliding mode control of vibration in flexible structures [J], AIAA Journal of Guidance, Dynamics and Control, 1992,15(1) :65-73.
  • 9Paiand M C, Sinha A. Active control of vibration in a flexible structure with uncertain parameters viasliding mode and H^∞/μ techniques[J]. Vibration and Noise Control, 1998, 65(1):1-7.

共引文献73

同被引文献16

  • 1何丽丽,张京军,王二成,高瑞贞.配置压电传感器/驱动器的柔性结构振动主动控制研究[J].机械强度,2010,32(5):702-706. 被引量:3
  • 2刘灿昌,柴山,王利民.非周期激励作用下振动系统的谐响应分析[J].机械强度,2010,32(6):878-883. 被引量:6
  • 3卢殿臣,颜敏娟,田立新,张正娣.非线性简支梁振动的H_∞控制[J].江苏大学学报(自然科学版),2004,25(5):405-408. 被引量:2
  • 4李芦钰,欧进萍.结构非线性振动的自适应模糊滑模控制[J].振动工程学报,2006,19(3):319-325. 被引量:8
  • 5Gao J X, Shen Y P. Active control of geometrically nonlinear transient vibration of composite plates with piezoelectric actuators [J]. Journal of Sound and Vibration, 2003, 264: 911-928.
  • 6Zhou Y H, Wang J Z. Vibration control of piezoelectric beam-type plates with geometrically nonlinear deformation [ J ]. International Journal of Non-llnear Mechanics, 2004, 39 : 909-920.
  • 7Mahmoodi N S, Khadem S E, Jalili N. Theoretical development and closed-form solution of nonlinear vibrations of a directly excited nanotube-reinforced composite cantilevered beam [ J ]. Archive of Applied Mechanics, 2006, 75 : 153-163.
  • 8Daqaqa M F, Alhazzab K A, Arafatc 14 N. Non-linear vibrations of cantilever beams with feedback delays[ J]. International Journal of Non-linear Mechanics, 2008, 43 : 962-978.
  • 9Vasques C M A, Rodrigues J D. Active vibration control of smart piezoelectric beams Comparison of classical and optimal feedback control strategies[ J]. Computers and Structures, 2006, 84: 1402- 1414.
  • 10Guo P C, Jia Z H, Simon X Yang. Model study and active control of a rotating flexible cantilever beam [J]. International Journal of Mechanical Sciences, 2004, 46: 871-889.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部