期刊文献+

用有限元法计算媒质各向异性真实头模型脑电正问题 被引量:2

SIMULATION OF BRAIN ELECTRIC ACTIVITY FORWARD PROBLEMS WITH ANISOTROPIC MEDIA AND REALISTIC HEAD MODEL BY THE FINITE ELEMENT METHOD
下载PDF
导出
摘要 神经元所产生的脑内电活动通常可用电流源偶极子来模拟。讨论用有限元法计算电流源偶极子产生的电流与电位分布 ,推导出计算偶极子源在各向异性导电媒质中的有限元方程 ,并对其进行变形 ,使得在各向异性导电媒质中生成的有限元刚度阵对称。这一算法已应用于媒质各向异性的真实头模型脑电计算 ,得到了较为满意的结果。 The current dipoles can be adopted to simulate the nerve sources in human brains. The electric current and potential distribution produced by dipoles in human brain was simulated by the finite element method. The finite element formula related to dipole sources and anisotropic media was derived. An approach for creating a symmetrical stiffness matrix of the finite element equation system in the computation of potential problems with anisotropic media was presented. In the simulation, the realistic shape of the head with anisotropic conducting media had been considered.
机构地区 清华大学电机系
出处 《中国生物医学工程学报》 EI CAS CSCD 北大核心 2003年第3期208-214,共7页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金资助项目 (5 0 2 770 19 5 993 7160 )
关键词 各向异性 脑电 有限元法 Brain Computer simulation Electric currents Finite element method Neurology
  • 相关文献

参考文献8

  • 1Kassem A. Awada, David R. Jackson, Jeffery T. Williams, et al. Computational aspects of finite element modeling in EEG source localization[J ]. IEEE Trans Biomed Eng, 1997,44(8) :736-752.
  • 2Wang Y, He B. A computer simulation study of cortical imaging from scalp potentials[ J ]. IEEE Trans Biomed Eng, 1998,45(6) :724-735.
  • 3Homrna S, Musha T, Nakajirna Y, et al. Conductivity ratios of the scalp-skill-brain head model in estimating equivalent dipole sources in human brain[J]. Neurosic Res, 1995,22:51-55.
  • 4J. C. De Munek. The potential distribution in a layered anisotropie spheroidal volume conductor[J]. J Appl Phys, 1988,64:464-471.
  • 5Pueyo A, Zingg DW. Efficient Newton-Krylov solver for aerodynamic computations[J ]. AIAA JOURNAL, 1998,36 (11 ):1991-1997.
  • 6Dayar T. State-space orderings for Gauss-Seidel in Markov-Chains revisited[J]. SIAM JOURNAL ON SCIENTIFIC COM-PUTING, 1998,19( 1 ) :148-154.
  • 7Hong Zhu. Adriaan van Oosterom. Computation of the potential distribution in a four-layer anisotropic concentric spherical volume conductor[J]. IEEE Trans. Biomed Eng, 1992,39(2) : 154-158.
  • 8J iansheng Yuan, Liping Zhang, Zhongxin Li. A step-by-step approach for three-dimensional finite element mesh generation[ J ]. IEEE Transactions on Magnetics, 1998,34 (5): 3375-3378.

同被引文献26

  • 1Brian HB. Medical impedance tomography and process impedance tomography: A brief review[J ]. Meas Sci Technol, 2001, 12: 991-996.
  • 2Holder DS. Detection of cerebral ischaemia in the anaesthetized rat by impedance measurement with scalp electrodes: Implications for non-invasive imaging of stroke by electrical impedance tomography [ J ].Clin Phys Physiol Meas, 1992, 13(1): 63-75.
  • 3Holder DS, Rao A, Hanquan Y. Imaging of physiologically evoked responses by electrical impedance tomography with cortical electrodes in the anaesthetised rabbit[J]. Physiol Meas, 1996, 17: A179-A186.
  • 4Adey W, Kado R, Didio J. Impedance measurements in brain tissue of animals using microvolt signals[J]. Exp Neurol, 1962, 5: 47-66.
  • 5Haglund M, Ojeman G, Hochman D. Optical imaging of epileptiform and functional activity in human cerebral cortex [J]. Nature, 1992,358: 668-671.
  • 6Boone K, Lewis A, Holder D. Imaging of cortical spreading depression by EIT: Implications for localization of epileptic foci [J ]. Physiol Meas, 1994, 15: A189-A198.
  • 7Tidswell A, Gibson A, Bayford R, et al. Validation of a 3-D reconstruction algorithm for EIT of human brain function in a realistic head shaped tank[J]. Physiol Meas, 2001, 22: 177-185.
  • 8Tidswell A, Gibson A, Bayford R, et al. Three-dimensional electrical impedance tomography of human brain activity [J ]. NeuroImage, 2001,13: 283-294.
  • 9Liston AD, Bayford RH, Tidswell A, et al. A multi-shell algorithm to reconstruct EIT images of brain function[J]. Physiol Meas, 2002, 23:105-119.
  • 10Pidcock MK, Kuzulglu M, Leblebicioglu K. Analytic and semi-analutic solutions in eletrical impedance tomography, two-dimensional problems[J]. Physiol Meas, 1995, 1677-1710.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部