期刊文献+

基于遗传算法的圆度公差评定法与采用最小二乘法评定的比较(英文) 被引量:9

Comparison of genetic algorithm based evaluation of roundness with evaluation of roundness based on least squared method
下载PDF
导出
摘要 根据提出的计算模型 ,对基于遗传算法的圆度误差评定和传统上采用最小二乘法的评定算法进行了比较分析 ,根据方法本身的特点和计算结果 ,分析了二者的不同点以及在工程应用中的适用场合。所构造的模型包括边界控制点和区域随机点 ,其中边界控制点模拟了由圆度误差最小区域条件所定义的最大内切圆和最小外切圆 ,而区域随机点模拟了实际情况下测试点的随机性和不确定性。计算结果表明基于遗传算法的圆度评定法精度较高 。 The evaluation of roundness based on genetic algorithm method(GAM) is compared with the evaluation of roundness based on least square method(LSM) with their advantages and drawbacks discussed in detail using the model proposed, which features bounds control data to simulated the maximum inscribed and maximum circumscribed circles defined under minimum zone conditions, and randonly produced data to simulate the randomness and uncertainties of test points under actual conditions. The computational results show that the accuracy of GAM is better than that of LSM.
出处 《光学精密工程》 EI CAS CSCD 2003年第3期256-261,共6页 Optics and Precision Engineering
基金 KeyprojectsupportedbytheNationalNaturalScienceFoundationofChina(No.5 0 2 0 5 0 0 7)
关键词 圆度公差 遗传算法 最小二乘法 误差评定 精度 模型 genetic algorithm based method (GAM) least squared method (LSM) circularity
  • 相关文献

参考文献12

  • 1SAMUEL G L, SHUNMUGAM M S. Evaluation of straightness and flatness error using computational geometric techniques[J]. Computer-aided Design, 1999, 31(13) : 829-843.
  • 2GOU J B,CHU Y X, LI Z X. A geometric theory of form, profile and orientation tolerances[J]. Precision Engineering, 1999, 23(2): 79-93.
  • 3CARR K, FERREIRA P. Verification of form tolerances, Part Ⅰ: basic issues, flatness, and straightness[J].Precision Engineering, 1995, 17(2): 134-143.
  • 4YAU H T. A model-based approach to form tolerance evaluation using non-uniform rational B-spline[J]. Robotics and Computer-Integrated Manufacturing, 1999, 15(4) : 283-295.
  • 5SAMUEL G L, SHUNMUGAM M S. Evaluation of sphericity error from form data using computational geometric techniques[J]. International Journal of Machine tools & Manufacture. 2002, 42(3) : 405-416.
  • 6HUANG J P. An exact minimum zone solution for three-dimensional straightness evaluation problems[J]. Precision Engineering, 1999, 23(3): 204-208.
  • 7NARAYANAN V N N, SHUNMUGAM M S. Function-oriented form evaluation of engineering surfaces[J].Precision Engineering, 1998, 22(2) : 98-109.
  • 8崔长彩,车仁生,叶东.基于遗传算法的圆度误差评估(英文)[J].光学精密工程,2001,9(6):499-505. 被引量:27
  • 9LI SH Y. Fuzzy control, neural control and intelligent cybernetics [M]. Harbin City: Harbin Institute of Technology Press, Sept., 1998.
  • 10GEN M, CHENG R W. Genetic algorithms and engineering design [M]. Beijing: Science press, Jan, 2000.

二级参考文献30

  • 1米凯利维茨Z.演化程序-遗传算法和数据编码的结合[M].北京:科学技术出版社,2000..
  • 2Hong J T,学位论文,1987年
  • 3Huang S T,Precision Engineering,1993年,15卷,1期,25页
  • 4Lai K,16th NAMRC,1988年,376页
  • 5米凯利维茨 Z,演化程序──遗传算法和数据编码的结合,2000年
  • 6Zhan Xinhua,Robotica,1999年,17卷,487页
  • 7Cheng M Y,J Robot Syst,1997年,14卷,5期,365页
  • 8Ye Dong,光学精密工程,1999年,7卷,2期,91页
  • 9Li Shiyong,模糊控制.神经控制和智能控制(第2版),1998年
  • 10Lai K,Proc Sixteenth North American Manufacturing Research Conference,1988年,376页

共引文献58

同被引文献64

引证文献9

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部