期刊文献+

分布式进化算法及其在翼型气动反设计中的应用(英文) 被引量:3

Distributed evolutionary algorithms for inverse design problems of airfoil in aerodynamics
下载PDF
导出
摘要 构造了一种新型基于基因算法与博弈论的并行分级多目标优化方法,并应用于多段翼型气动反设计。此方法基于二进制编码的基因算法和博弈论,优化变量被分配给不同的博弈者,因而总体优化问题转变为分裂空间中的局部优化问题。文中给出了一个多段翼型形状/位置可压位流的反设计问题的求解算例,引入了基于非结构网格的分级结构。与传统基因算法数值算例的对比表明了本文构造的并行分级算法具有较高的计算效率,可广泛应用于多目标优化问题。 New parallel hierarchical multiobjective optimization approaches based on Genetic Algorithms (GAs) with Nash scenarios of Game Theory (GT) are investigated for solving inverse multielement airfoil design problems in aerodynamics on distributed parallel environments. A multiobjective optimization methodology presented here relies on binary coded GAs and coupled with GT. The design variables of such optimization problems are split among several players, the global multicriterion optimization problem being replaced by several sub optimizations operating in the decomposed search space. A shape/position reconstruction problem (inverse problem) for a multielement airfoil in compressible potential flow is solved using Parallel Hierarchical GAs coupled a Nash game with a hierarchy based on unstructured meshes. Numerical results, compared with sequential algorithms, show that parallel hierarchical GAs combined with Nash strategy are more efficient and robust than simple GAs and this method could be used with high efficiency for complex multicriteria optimization problems in aerodynamics.
出处 《空气动力学学报》 CSCD 北大核心 2003年第2期137-143,共7页 Acta Aerodynamica Sinica
基金 FoundationitemofNUAAforyoungresearchers.
关键词 分布式进化算法 翼型 气动反设计 博奕论 基因算法 genetic algorithms game theory multi-objective optimization distributed parallelization hierarchical algorithms
  • 相关文献

参考文献7

  • 1HOLLAND J H. Adaptation in natural and artificial system[M]. University of Michigan, Press Ann Arbor, 1975.
  • 2VON NEUMANN J. Zur theorie der gesellschaftsspiele[J]. Math. Ann., 1928,100:295 - 320.
  • 3NASH J F. Noneooperative games[J]. Annals of Mathematies, 1951, 154:289.
  • 4ALEXANDROV N M et al. Optimization with variable-fidelity models applied to wing deaign[R]. AIAA 2000-0841, 2000.
  • 5WANG JIANGFENG. Distributed multi-criteria optimization using GAs and game theory and related applications to high lift CFD problems in aerodynamics[M]. [Ph.D dissertation] University of Paris 6, France 2001.
  • 6BANK R E, PLTMG: A software package for solving elliptic partial differential equations, Users' guide 8.0[M]. In Jolia California, University of California at San Diago, 1998.
  • 7WANG JIANGFENG, PERIAUX, J. GAs and game theory for high lift multi airfoil problems in serodynamics[C], in Proceedings of CFD21 Conference, Hafez M,Morinishi K,Periaux J, Eds, Vieweg Verlag, Kyoto, 2001.

同被引文献34

  • 1王江峰,伍贻兆.非结构网格高超声速绕流数值模拟及涵道构型减阻特性分析[J].南京航空航天大学学报,2004,36(6):671-676. 被引量:7
  • 2[2]Gardner B A,Selig M S.Airfoil design using a genetic algorithm and an inverse method[R].AIAA 03-0043,2003.
  • 3[3]Holst T L.Genetic algorithms applied to multi-objective aerodynamic shape optimization[R].NASA/TM-05-212846,2005.
  • 4GibbonsR 高峰译.博弈论基础[M].北京:中国社会科学出版社,1999..
  • 5曹惟庆 徐曾荫.机构设计[M].北京:机械工业出版社,1999..
  • 6Spallino R, Rizzo S. Multi-objective discrete optimization of laminated structures[J]. Mechanics Research Communications, 2002,29:17-25.
  • 7Dhingra A K, Rao S S. A coopterative fuzzy game theoretic approach to multiple objective design optimization[J]. European Journal of Operational Research, 1995, 83:547-567.
  • 8Periaux J, Chen H Q, Mantel B, et al. Combining Game Theory and Genetic Algorithms with Application to DDM-nozzle Optimization Problems[J]. Finite Elements in Analysis and Design,2001, 37:417-429.
  • 9吕慧瑛.六杆停歇机构的优化设计[J].苏州丝绸工学院学报,2001,21(4):29-35. 被引量:3
  • 10施欣.港口合作的博奕分析[J].上海交通大学学报,2001,35(6):943-946. 被引量:13

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部