期刊文献+

气固两相管道流中柱状粒子取向的数值研究 被引量:9

Research on the orientation of cylindrical particles in gas-solid two-phase pipe Flows
下载PDF
导出
摘要 本文对管道悬浮流中柱状粒子的取向分布进行研究。首先对柱状粒子在流场内的运动进行数值模拟,然后运用统计方法得出大量柱状粒子的取向分布;得到了粒子长径比、St数和流场区域对粒子取向分布的影响。计算结果表明,柱状粒子长径比和St数的变化对粒子取向分布的影响并不明显,而流场区域所造成的流场横向速度梯度对粒子取向分布有重要的影响。随着流场横向速度梯度的增大,粒子有明显的占优取向,且当流场横向速度梯度增大到一定程度时,粒子取向都趋向于流动方向。文中部分结果与实验进行了比较,两者吻合较好。 The orientation of cylindrical particles which suspend in pipe flows is investigated. The motion of cylindrical particles in the flow is simulated numerically through a method that proves to be appropriate since the results of numerical simulation are close to the results of experiments. Then the motions of a considerable number of particles are calculated, and the distributions of particle orientation are obtained by statistical method. The effects of particle ration, Stokes number on the distribution of particle orientation in the different domain are analyzed. The results show that the particle ration and Stokes number have little effects on the distribution of particle orientation, however, the lateral velocity gradient of flow which is embodied in the change of Re number and the domain where particles are immersed has a great effect on the distribution of particle orientation. The larger lateral velocity gradient of flow will make particle orient to the direction of flows. Some of the results agree well with the experimental ones.
出处 《空气动力学学报》 CSCD 北大核心 2003年第2期237-243,共7页 Acta Aerodynamica Sinica
基金 国家杰出青年科学基金资助项目(19925210)
关键词 柱状粒子悬浮流 数值模拟 粒子取向 速度梯度 管道悬浮流 气固两相流 suspension of cylindrical particles orientation numerical simulation pipe flow
  • 相关文献

参考文献9

  • 1SPURNY K S, GENTRY J W,STOBER W. Fundamentals aerosol science[M]. (edited by SHAW, D.T. ), 1978, Chap.5. John Wiley, New York.
  • 2CHIBA K,NAKAMURA K. Numerical solution of fiber orientation in a backward-facing step channel[M]. Nihon Reoro. Ji.Gakk, 1997,25(2) :79-87.
  • 3ERICSSON K A, TOLL S, MANSON J A E. The two-way interaction between anisotropic flow and fiber orientation in squeeze flow[J]. J. Rheol., 1997,41(3) :491-511.
  • 4DOESBURG J et al. Microstructure and preferred orientation of Au-Sn alloy plated deposits [ J ]. Materials science &engineering, 2000,78 ( 1) :44-53.
  • 5ZAK G et al. Estimation of three-dimensional fiber-orientation distribution in short-fiber composites by a two-section method[J]. Journal of composite matrials, 2001,35(4) :316-330.
  • 6BURNELL E E et al. Pressure-induced change in orientation order of solutes in liquid crystals[J]. Chemical physics letters,2001, 337(4) :248-256.
  • 7BERNSTEIN O, SHAPIRO M. Direct determination of the orientation distribution function of cylindrical particles immersed in laminar and turbulent shear flows[J]. J. Aerosol Sci. ,1994,25(1):113-136.
  • 8POZBIKIDIS C. A singularity method for unsteady linearizod flow[ J]. Phys. Fluids. 1989, A1 (9): 1508-1521.
  • 9LOEWENBERG M. Stokes resistance, added mass, and Basset force for arbitrarily oriented, finite-length cylinders[J]. Phys.Fluids, 1993 ,A5(3) :725-734.

同被引文献86

引证文献9

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部