期刊文献+

具时滞的n斑块捕食-食饵扩散系统的正周期解(英文) 被引量:4

Positive Periodic Solutions for n-patches Predator-Prey Dispersion-Delay Models
下载PDF
导出
摘要 讨论了具时滞和功能反应的n斑块捕食-食饵扩散系统,利用新的方法,得到了该系统正周期解存在性的判别准则。 In this paper, a nonautonomous predator-prey dispersion model with functional response and continuous time delay is studied, where all parameters are time dependent. In this system, which consists of n-patches, the prey species can disperse among n-patches, but the predator species is confined to one patch and cannot disperse. By using a new method, a set of easily verifiable sufficient conditions are derived for positive periodic solutions of the system.
作者 李必文
出处 《生物数学学报》 CSCD 2003年第2期167-175,共9页 Journal of Biomathematics
基金 Supported by the Youth Project Foundation of Hubei Province Education Department(2002B00002)
关键词 时滞 正周期解 n斑块捕食—食饵扩散系统 迭合度连续性定理 Positive periodic solutions Predator-prey patch system Delay Continuation theorem of coincidence degree
  • 相关文献

参考文献2

二级参考文献2

共引文献22

同被引文献24

  • 1高建国.基于比率的Holling-Tanner系统全局渐近稳定性[J].生物数学学报,2005,20(2):165-168. 被引量:25
  • 2Hassell M P, Varley G C. New inductive population model for insect parasites and its bearing on biologicalcontrol [J]. Nature, 1969, 223:1133-1137.
  • 3Schenk D, Bersier L and Bacher S. An experimental test of the nature of predation: neither prey- norratio-dependent [J]. J Animal Ecol、2005, 74:86-91.
  • 4Cosner C, DeAngelis D L, Ault J S and Olson D B. Effect of spatial grouping on the functional response ofpredators [J]. Theor. Pop. Biol., 1999, 56:65—75.
  • 5Hsu S.-B, Hwang T.-W and Kuang Y. Global dynamics of a predator-prey model with Hassell-Varley typefunctional response [J]. Dis. Cont. Dynam. Sys. Series B, 2008, 10:857—871.
  • 6Liu X, Weng P. The permanence of predator-prey system with new functional response[J]. Journal ofBiomathematics. 2007, 22(5):799-804.
  • 7Liu X, Lou Y, Global dynamics for a predator-prey model [J]. J. Math. Anal. Appl., 2010, 371:323—340.
  • 8Lu Z, Takeuchi Y. Global asymptotic behavior in single-species discrete diffusion systems[J]. Journal of Mathematical Biology, 1993, 32 (1):67-77.
  • 9Kuang Y, Takeuchi Y. Predator-prey dynamics in models of prey dispersal in two-patch environments[J]. Mathematical Biosciences, 1994, 120(1):77-98.
  • 10Li M, Shuai Z. Global-stability problem for coupled systems of differential equations on networks[J]. Journal of Differential Equations, 2010, 248(1):1-20.

引证文献4

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部