期刊文献+

前馈神经网络和Fisher判别分析对上市公司财务状况异常的预测研究

The research on predicting financial abnormity in listed companies using fisher discriminant and feed forward neural networks
下载PDF
导出
摘要 本文建立了基于数值优化的Levenberg-Marquardt算法的前馈神经网络预测模型和Fisher多元判别分析模型对上市公司的财务状况异常进行预测,研究结果表明前馈神经网络预测模型在预测精度上较传统的Fisher多元判别分析模型有一定优越性,可以作为证券投资者和分析人员使用的有效预测工具。 This paper builds a multi-layer feed forward neural network model based on Levenberg-Marquardt algorithm and a Fisher discriminant model to predict financial abnormity in Chinese listed companies. Research result indicates that accuracy of neutral network predicting model is better than that of traditional discriminant model and it can be applied as an effective predicting tool by securities investors and analysts.
作者 乔韡韡
出处 《华东经济管理》 2003年第3期93-95,共3页 East China Economic Management
关键词 神经网络 FISHER判别分析 上市公司 财务状况异常预测 证券投资者 LEVENBERG-MARQUARDT算法 neutral network prediction listed company financial abnormity
  • 相关文献

参考文献4

二级参考文献4

  • 1[1]Ohlson, J.A. Financial ratios and the probabilistic prediction of bankruptcy[J]. Journal of Accounting Research,1980,1:109-131.
  • 2[2]Altman, E.Financial Ratios:Discriminant Analysis and the Prediction of Corporate Bankruptcy[J]. Journal of Finance, 1968,(3):589-609.
  • 3[3]Zmijewski, M.E.Methodological issues related to the estimation of financial distress prediction models[J]. Studies on Current Econometric Issues in Accounting Research, 1984, (1):59-82.
  • 4[4]John Stephen Grice and Robert W. Ingram. "Tests of the Generalizability of Altmans Bankruptcy Model"[J]. Journal of Business Research. 2001,(54):53-61.

共引文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部