期刊文献+

带机器准备时间的同类机在线与半在线排序问题 被引量:7

ON-LINE AND SEMI ON-LINE SCHEDULING ON UNIFORM MACHINES WITH NON-SIMULTANEOUS MACHINE AVAILABLE TIMES
下载PDF
导出
摘要 研究带机器准备时间的m台同类机 (uniformmachines)在线和半在线排序问题 ,目标函数为极小化最大机器 (工件 )完工时间 .对于在线情形 ,证明了LS算法的最坏情况为 ρ =( 1+ 5 ) 2 ,m =2 ,1+ 2m - 2 2 ,m≥ 3 ,并且当m =2时 ,LS算法是最好的近似算法 ;当m =2 ,3 ,… ,6时界是紧的 ,特别地 ,当s1 =s2 =… =sm - 1 ,sm ≥ 1时 ,证明了LS算法的最坏情况界为 ρ =( 1+ 5 ) 2 ,m =2 ,3 - 4 (m + 1) ,m≥ 3 ,而且界是紧的 ;对于已知加工时间递减的半在线排序问题 ,证明了LS算法的最坏情况界为 2 - 2 (m + 1) . This paper investigates on-line and semi on-line scheduling problems on uniform machines with non-simultaneous machine available times. In on-line vertion, it is proved that the worst case performance ratio of LS algorithm is ρ=(1+5)/2, m=2, 1+2m-2/2, m≥3, furthermore, LS algorithm is the best possible approximation algorithm when m=2 and the bound is tight when m=2,3,...,6. For the case that s 1=s-2=...=s m-1, s-m≥1, it is proved that the worst case performance ratio of LS algorithm is ρ=(1+5)/2, m=2, 3-4/(m+1), m≥3, and the bound is tight. For the semi on-line scheduling where the jobs are ordered in decreasing times, it is proved that the worst case performance ratio of LS algorithm is 2-2/(m+1).
出处 《曲阜师范大学学报(自然科学版)》 CAS 2003年第3期1-5,共5页 Journal of Qufu Normal University(Natural Science)
基金 国家自然科学基金 教育部高校骨干教师项目 山东省中青年学术骨干项目
关键词 在线排序 半在线排序 机器准备时间 同类机 近似算法 最坏情况 LS算法 on-line scheduling approximation algorithm worst case performance ratio
  • 相关文献

参考文献11

  • 1谈之奕,何勇.带机器准备时间的平行机在线与半在线排序[J].系统科学与数学,2002,22(4):414-421. 被引量:21
  • 2张玉忠,杜东雷,林钧昌.关于P|s_(ij)|C_(max)问题的LPT算法[J].应用数学学报,1999,22(1):154-157. 被引量:10
  • 3Graham R L. Bounds for cetiain multipmcessing anomalies[J]. The Bell System Technical Journal, 1966, 45 : 1563 - 1581.
  • 4Graham R L. Bounds on multiprocessing anomalies[J]. SIAM J Appl Math, 1969, 17:416-429.
  • 5Cho Y, Sahni S. Bounds for list schedules on uniform processors[J]. SIAM J Computing, 1980,9:91 - 103.
  • 6Gonzalez T, Ibarra O H, Sahni S. Bounds for LPT scheduling on uniform processors[M]. Tech Rep 75- 1, University of Minnesota,1975.
  • 7Lee C Y. Parallel machines scheduling with non-simultaneous machine available time[J]. Discrete Applied Mathematics, 1991, 30:53 -61.
  • 8Lee C Y, He Y, Tang G. A note on "parallel machines scheduling with non-simultaneous available time"[J]. Discrete Applied Mathematics, 2000, 100:133 - 135.
  • 9He Y. Parametric IPT-bound on parallel machine scheduling with non-simultaneous available time[ J]. Asia-Pacific Journal of Operations Research, 1998,15:29-36.
  • 10Seiden S, Sgall J, Woeginger G. Semi on-line scheduling with decreasing job sizes[J]. Operations Research Letters, 2000,27:217 -221.

二级参考文献1

共引文献29

同被引文献22

引证文献7

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部