期刊文献+

MBEKHTA子空间与算子的可逆性 被引量:1

MBEKHTA'S SUBSPACES AND THE INVERTIBILITY OF THE OPERATOR
下载PDF
导出
摘要 利用著名的MBEKHTA子空间得出了左、右可逆算子的一些性质 。 The invertibilities of operators are disscused in terms of two important subspaces introduced by Mbekhta M in 1987.
作者 刘丽
出处 《曲阜师范大学学报(自然科学版)》 CAS 2003年第3期37-38,共2页 Journal of Qufu Normal University(Natural Science)
关键词 MBEKHTA子空间 左可逆算子 右可逆算子 正则算子 可逆性 核空间 值域 K(A) H 0(A) left-invertible operator right-invertible operator regular operator
  • 相关文献

参考文献5

  • 1Conway J. A course in functional analysis[J]. J Math Anal Appl, 1974, 45:615-628.
  • 2Gong Weibang, Wang Libin. Mbekhta's subspaces and a spectral theory of compact operators[J]. Proc Amer Math Soc,2003,131:587 -592.
  • 3Woo Young Lee. A generalization of the punctured neighborhood theorem[J]. Proc Amer Math Soc,1993,117:107 - 109.
  • 4Mbekhta M. Generalisation de la decomposition de kato aux operateurs paranomaux et spectraux[J]. Glasgow Math J, 1987,29:159-175.
  • 5Schnoeger C. On isolated points of the spoetrum of a bounded linear oporator[J]. Proe Amer Math Soc, 1993,117:715 - 719.

同被引文献6

  • 1Convey B. A Course in Functional Analysis [M]. Second Edition. New York:Springer,1990.
  • 2Finch K. The single valued extension property on a Banach space [J]. Pacific J Math, 1975,58:61~69.
  • 3Gong B, Han D G. Spectrum of the Products of Operators and Compact Perturbations [J]. Proc Amer Math Soc, 1994,120:755~760.
  • 4Gong B, Wang L B. Mbekhta's subspaces and a Spectral Theory of Compact Operators [J]. Proc Amer Math Soc, 2003,131:587~592.
  • 5Mbekhta M. Generalisation de la decomposition de kato aux operateurs paranormaux et spectraux [J]. Glasgow Math J, 1987,29:159~175.
  • 6Schmoeger. On isolated points of the spectrum of a bounded linear operator [J]. Proc Amer Math Soc, 1993,117:715~719.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部