MBEKHTA子空间与算子的可逆性
被引量:1
MBEKHTA'S SUBSPACES AND THE INVERTIBILITY OF THE OPERATOR
摘要
利用著名的MBEKHTA子空间得出了左、右可逆算子的一些性质 。
The invertibilities of operators are disscused in terms of two important subspaces introduced by Mbekhta M in 1987.
出处
《曲阜师范大学学报(自然科学版)》
CAS
2003年第3期37-38,共2页
Journal of Qufu Normal University(Natural Science)
参考文献5
-
1Conway J. A course in functional analysis[J]. J Math Anal Appl, 1974, 45:615-628.
-
2Gong Weibang, Wang Libin. Mbekhta's subspaces and a spectral theory of compact operators[J]. Proc Amer Math Soc,2003,131:587 -592.
-
3Woo Young Lee. A generalization of the punctured neighborhood theorem[J]. Proc Amer Math Soc,1993,117:107 - 109.
-
4Mbekhta M. Generalisation de la decomposition de kato aux operateurs paranomaux et spectraux[J]. Glasgow Math J, 1987,29:159-175.
-
5Schnoeger C. On isolated points of the spoetrum of a bounded linear oporator[J]. Proe Amer Math Soc, 1993,117:715 - 719.
同被引文献6
-
1Convey B. A Course in Functional Analysis [M]. Second Edition. New York:Springer,1990.
-
2Finch K. The single valued extension property on a Banach space [J]. Pacific J Math, 1975,58:61~69.
-
3Gong B, Han D G. Spectrum of the Products of Operators and Compact Perturbations [J]. Proc Amer Math Soc, 1994,120:755~760.
-
4Gong B, Wang L B. Mbekhta's subspaces and a Spectral Theory of Compact Operators [J]. Proc Amer Math Soc, 2003,131:587~592.
-
5Mbekhta M. Generalisation de la decomposition de kato aux operateurs paranormaux et spectraux [J]. Glasgow Math J, 1987,29:159~175.
-
6Schmoeger. On isolated points of the spectrum of a bounded linear operator [J]. Proc Amer Math Soc, 1993,117:715~719.