摘要
1/f分形随机过程广泛地存在于各种自然现象和社会现象中 ,日益成为信号检测与估计、信号处理及图像处理的研究热点 .分形布朗运动是模拟此类信号的很好的数学模型 .小波因其所具有的多尺度分析能力成为分析分形信号的有力工具 .本文分析了二维分形布朗运动经小波变换后各尺度间小波系数相关结构的特性 ,提出了一种合成二维分形布朗运动的算法 ,并展示了其在和谐图案生成上的应用 .
The 1/f family of fractal processes exists widely in various physical and social phenomena and is increasingly appealing to researcher on signal detection and estimation, signal processing and image processing. Fractional Brownian motion is a convenient model for this kind of process. Wavelet transform is a useful tool to analyze fractal signal by its multi-resolution analysis capability. After analyzing the correlation structure of 2-D fBm signal, s wavelet decomposition, this paper proposed a method to synthesize 2-D fBm and showed its application on producing harmonious patterns.
出处
《电子学报》
EI
CAS
CSCD
北大核心
2003年第6期825-828,共4页
Acta Electronica Sinica
基金
国家自然科学基金 (No 60 0 72 0 0 5)
北京自然科学基金 (No 30 330 1 3)
关键词
1/f过程
分形布朗运动
小波变换
Brownian movement
Fractals
Mathematical models
Two dimensional
Wavelet transforms