期刊文献+

基于小波的2-D分形布朗运动分析与合成 被引量:3

Analysis and Synthesis of Two Dimensional Fractional Brownian Motion Based on Wavelet
下载PDF
导出
摘要 1/f分形随机过程广泛地存在于各种自然现象和社会现象中 ,日益成为信号检测与估计、信号处理及图像处理的研究热点 .分形布朗运动是模拟此类信号的很好的数学模型 .小波因其所具有的多尺度分析能力成为分析分形信号的有力工具 .本文分析了二维分形布朗运动经小波变换后各尺度间小波系数相关结构的特性 ,提出了一种合成二维分形布朗运动的算法 ,并展示了其在和谐图案生成上的应用 . The 1/f family of fractal processes exists widely in various physical and social phenomena and is increasingly appealing to researcher on signal detection and estimation, signal processing and image processing. Fractional Brownian motion is a convenient model for this kind of process. Wavelet transform is a useful tool to analyze fractal signal by its multi-resolution analysis capability. After analyzing the correlation structure of 2-D fBm signal, s wavelet decomposition, this paper proposed a method to synthesize 2-D fBm and showed its application on producing harmonious patterns.
出处 《电子学报》 EI CAS CSCD 北大核心 2003年第6期825-828,共4页 Acta Electronica Sinica
基金 国家自然科学基金 (No 60 0 72 0 0 5) 北京自然科学基金 (No 30 330 1 3)
关键词 1/f过程 分形布朗运动 小波变换 Brownian movement Fractals Mathematical models Two dimensional Wavelet transforms
  • 相关文献

参考文献12

  • 1Musha T. The World of Fluctuation [ M]. Tokyo: Koudann Press, 1991.
  • 2Musha T.Thought of Fluctuation [ M]. Tokyo: NHK Press, 1995.
  • 3G W Wornell, A V Oppenheim. Estimation of fractal signals from noisy measurements using wavelets [ J]. IEEE Transactions on Signal Processing, 1992,40(3) :611 - 623.
  • 4B B Mandelbrot, H W Van Ness. Fractional brownian motions, fractional noises and applications [J]. 1968, SIAM Rev, 10(4) :422 - 436.
  • 5Patrick Flandrin. On the spectrum of fractional Brownian motions[ J ].IEEE Trans Inform Theory, 1989,35( 1 ) : 197 - 199.
  • 6G W Wornell. Wavelet-based representations for the 1/f family of fractal processes [J]. Proceedings of the IEEE, 1993, 81 (10) : 1428 -1450.
  • 7M S Keshner. 1/f noise [J]. Proc IEEE, 1982,70(3) :212 - 218.
  • 8B B Mandelbrot. Some noises with 1/f spectrum, a bridge between direct current and white noise [J]. IEEE Trans Inform Theory, 1967,IT-13(4) :289 - 298.
  • 9I S Reed, P C Lee, T K Truong. Spectral represe-ntation of fractional Brownian motion in n dimentions and its properties [J]. IEEE Transactions on Information Theory, 1995,41(5) : 1439 - 1451.
  • 10I Daubechies. Ten Lectures on Wavelets [ M ]. New York: Capital City Press, 1992.

同被引文献42

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部