期刊文献+

三维均匀各向同性两相湍流的直接模拟 被引量:1

DIRECT NUMERICAL SIMULATION OF GAS-PARTICLE TURBULENCE IN THREE-DIMENSIONAL HOMOGENEOUS ISOTROPIC TURBULENCE
下载PDF
导出
摘要 本文对三维气粒两相均匀各向同性湍流进行了直接数值模拟。气相控制方程组采用分布投影方法进行求解,微分方程采用六紧致阶差分格式和快速Fourier变换结合求解;计算颗粒场时,采用Lagrangian方法。由该方法得到的能谱和各统计量与由谱方法得到的对应值进行了比较,吻合十分理想,对不同Stocks数颗粒在流场内的瞬态分布也进行了初步模拟,并观察到局部富集现象,证明该方法是进行两相湍流直接数值模拟行之有效的方法。 A study of particle behavior in homogeneous isotropic turbulence using direct numerical simulation is presented. The governing equation of continuum phase is solved under fractional-step method, where the difference equation is calculated by aid of a sixth-order compact finite difference scheme and FFT. The movement of particles are simulated using the Lagrangian approach. The energy spectrum and statistical properties obtained coincide well with those by spectral method, and the temporal distribution of particles with Stocks number near reveals preferential concentration. The results show that current method is an effective approach for direct numerical simulation of gas-particle turbulence.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2003年第4期621-624,共4页 Journal of Engineering Thermophysics
基金 国家重点基础研究发展规划项目资助(No.G1999022207) 国家自然科学基金(No.50276021)
关键词 直接模拟 均匀各向同性湍流 气—固两相流 高阶紧致差分格式 direct numerical simulation homogeneous isotropic turbulence gas-particle turbulence high-order compact finite difference scheme
  • 相关文献

参考文献9

  • 1l~i M M, Moin P. Direct Simulation of Turbulent Flow Using Finite-Difference Schemes. J. Comput. Phys.,1991, 96:15-53.
  • 2Lele S K. Compact Finite Difference with Spectral Like Resolution. J. Comput. Phys., 1992, 103:16-42.
  • 3Pu D X, Ma Y W. A High Order Accurate Difference Scheme for Complex Flow Fields. J. Comput. Phys.,1997, 134:1-15.
  • 4Chu P C, Fan C W. A Three-Point Combined Compact Difference Scheme. J. Comput. Phys., 1998, 140: 370-399.
  • 5Chu P C, Fan C W. A Three-Point Six-Order Staggere dCombined Compact Difference Scheme. Mathematical and Computer Modeling, 2000, 32:323-340.
  • 6Coppen Scott W. Particle Behavior Using Direct Numerical Simulation of Isotropic Turbulence. Master Dissertation, Tufts University, 1998.
  • 7Chorin A J. Numerical Solution of the Navier-Stokes Equations. Mathematics of Computation, 1968, 22: 745-762.
  • 8Eswaran E, Pope S B. An Examination of Forcing in Direct Numerical Simulations of Turbulence. Comput. Fluids, 1988, 16:257-278.
  • 9Overholt M R, Pope S B. A Deterministic Forcing Scheme for Direct Numerical simulation of Turbulence. Comput.Fluids, 1998, 27:11-28.

同被引文献77

引证文献1

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部