期刊文献+

基于C-均值和免疫遗传算法的聚类分析 被引量:2

Cluster Analysis Based on C-Means and Immune Genetic Algorithm
下载PDF
导出
摘要 聚类问题在一定条件下可以归结为一个带约束的优化问题。遗传算法作为一种鲁棒性很强的优化算法,具有很强的全局寻优能力。提出了一种基于C-均值和带免疫机制的混合遗传算法。理论分析和仿真实验表明,该算法既具有很强的全局寻优能力,也具有较强的局部寻优能力。 Cluster analysis is a kind of unsupervised learning method, which can extract the hidden rules from the feature data set of the objects. Clustering can be regarded as a constrained optimization problem under certain conditions. As a robust optimizing method, genetic algorithm has shown great global searching capability, which is independent of the problem domain. This paper proposes an improved hybrid genetic algorithm based on C-means and immune principle. Theoretical analysis and experiments show that this method outperforms the existing genetic clustering algorithms in both global and local convergence speed.
作者 高坚
出处 《计算机工程》 CAS CSCD 北大核心 2003年第12期65-66,194,共3页 Computer Engineering
基金 国家自然科学基金资助项目 (69875014)
关键词 C-均值算法 免疫原理 遗传算法 聚类分析 C-means Immune principle Genetic algorithm Cluster analysis
  • 相关文献

参考文献6

  • 1刘勇 康立山 陈毓屏.非数值并行算法—遗传算法[M].北京:科学出版社,1998..
  • 2Selim S Z, Ismail M A. K-Means-type Algorithms: A Generalized Convergence Theorem and Characterization of Local Optimality. IEEE Trans. Pattern Analysis and Machine Intelligence, 1984, PAMI-6(1):81-87.
  • 3Krishma K, Murty M N. Genetic K-means Algorithm. IEEE Trans.on System, Man, and Cybernetics, Part B, 1999, 29(3): 433-439.
  • 4Rudolph G. Convergence of Canonical Genetic Algorithms. IEEE Trans. on Neural Networks, 1994, 5(1): 96-100.
  • 5Maulik U, Bandyopadhyay S. Genetic Algorithm-based Clustering Technique. Pattern Recognition, 2000, 33(9): 1455-1465.
  • 6Erigui H, Krishnapuram R. Clustering by Competitive Agglomeration.Pattern Recognition, 1997, 30(7): 1109-1119.

共引文献1

同被引文献11

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部