期刊文献+

高阶微分方程允许解的存在性 被引量:6

THE EXISTENCE OF ALGEBRAIC SOLUTIONS OF HIGHER-ORDER DIFFERENTIAL EQUATIONS
下载PDF
导出
摘要 本文主要目的是利用值分布理论研究复高阶微分方程(Ω(z,ω)/ω~k0(ω')~k1…(ω^(n)~kn)~m=aω~p+sum from j=0 to x b_j(z)ω~j(p≥m)亚纯允许解的存在性问题.证明了一个在适当的条件下,该微分方程的亚纯解一定不是允许解的结果.实例表明该文的结果是最佳的. The main purpose of this paper is to investigate the existence of complex higher-order differential equation ( by using the value distribution theory, and to prove a resuct which meromorphic solutions of this differential equation must be non-admissible solutions under some proper condition. An example is given to show that the result in this paper is sharp.
作者 高凌云
机构地区 暨南大学数学系
出处 《数学杂志》 CSCD 北大核心 2003年第3期381-384,共4页 Journal of Mathematics
基金 国家自然科学基金(19971052)
关键词 允许解 微分方程 值分布 admissible solution differential equation value distribution
  • 相关文献

参考文献1

二级参考文献4

  • 1[1]Hayman, W.K., Metomorphic functions [M]. Oxford: Oxford University Press, 1964.
  • 2[2]He Yuzan and Xiao Xiuzhi, Algebroid Functions and ordinary differential equations[M]. Beijing:Science Press, 1988.
  • 3[3]Sons, L.R., Deficiencies of monomials [J]. Math. Z, 1969, 111:53-68.
  • 4[4]Toda, N., On the growth of non-admissible solutions of the differential equation (w′)n=in∑aj(z)wj [J]. Kodai Math. J., 1984, 7:293-303.

共引文献3

同被引文献41

  • 1高凌云.一类复代数微分方程解的解析式(英文)[J].纯粹数学与应用数学,2005,21(4):305-309. 被引量:1
  • 2江秀海,高凌云.关于w^m+aw^(i_0)(w′)^(i_1)…(w^((n)))~i_n)的值分布[J].纯粹数学与应用数学,2007,23(1):17-20. 被引量:11
  • 3何育赞,肖修治.代数微分方程与常微分方程[M].北京:科学出版社,1988.
  • 4Toda N. On the growth of meromorphic solutions of some higher-order differential equations[J]. J. Math. Soc. Japan, 1986,38(3):439-451.
  • 5Toda N. On the conjecture of Gackstatter and Laine concerning the differential equatlon(w')^n=∑j^m=0aj(z)w^j [J]. Kodai Math. J., 1983,6(2):238-249.
  • 6HaymanW K.Meromorphic functions[M].Oxord University Press, 1964.
  • 7TodaN.On the conjecture of gackstatter and laine concerning the differential equation(w')n∞∑mj=0ai(z)wj[J].KodaiMath.J., 1983,6, 238-249.
  • 8Toda N.On the growth of meromorphic solutions of some higher—order differential equations [J] .J.Math.Soc.Japan, 1986, 38(3):439-451.
  • 9laine I. Nevanlinna theory and cOmpiex differential equation [M] .Berlin:Walter de Gruyter, 1993.
  • 10HilleE.Ordinary differential equations in the complex domain[M] .New York:Wileyinterscience, 1976.

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部