期刊文献+

基于多尺度分析的MR图像粗糙集增强算法 被引量:3

Contrast enhancement of MR images based on muliscale edge representation and rough sets
下载PDF
导出
摘要 粗糙集理论是一种新的处理含糊和不确定问题的数学工具,本文在对MR图像多尺度边缘表示的基础上;引入粗糙集理论对图像作对比度增强处理,提出了一种基于多尺度分析的粗糙集图像增强算法。该方法具有良好的增强效果,并对噪声有一定的抑制作用,本文最后给出了具体实验结果。 Rough sets theory is a new mathematical tool to deal with vagueness and uncertainly. In this paper. we propose an effective contrasl enhancement method for MR images based on multiscale edge representation of images. In the method, the rough sets theory is introduced. At the end, we present some experimental results from enhancing MR images and discuss the advantages of the method.
出处 《中国医学物理学杂志》 CSCD 2003年第3期151-153,共3页 Chinese Journal of Medical Physics
关键词 多尺度分析 对比度增强 粗糙集 muitiscale analysis contrast enhancement rough sets
  • 相关文献

参考文献6

  • 1谢杰成,张大力,徐文立.小波图象去噪综述[J].中国图象图形学报(A辑),2002,7(3):209-217. 被引量:254
  • 2R. M. Henkelman, Measurement of signal intensities in the presence of noise in MR images[J]. Medical Physics.1985, 12(2):232-233.
  • 3J. Sijbers etc., Estimation of the noise in magnitude MR images[J].Magnetic Resonance Imaging.1998,10(1):87-90.
  • 4S.Mallat and S.Zhong.Characterization of signals from multiseale edges[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,vol.1992,14:710-732
  • 5J. Lu. D. M. Healy Jr. and J. B. Weaver. Contrast Enhancement of Medical Images Using Multiseale Edge Representution[J].Optieal engineering.1994,33(7):2151-2161
  • 6Y. Jin. L, Fayad and A. Laine. Contrast Enhancement by MultiSeale Adaptive Histogram Equalization[J].Wavelet Applieations in Signal and Image processing Ⅸ.A.Aldroubi.A.F.Laine.M.A.linser.Eds.Proceedings of the SPIE.San Diego CA.2001

二级参考文献66

  • 1[9]You Yuli, Kaveh D. Fourth-order partial differential equations for noise removal[J]. IEEE Trans. Image Processing, 2000,9(10):1723~1730.
  • 2[10]Bouman C, Sauer K. A generalized Gaussian image model of edge preserving map estimation[J]. IEEE Trans. Image Processing, 1993,2(3):296~310.
  • 3[11]Ching P C, So H C, Wu S Q. On wavelet denoising and its applications to time delay estimation[J]. IEEE Trans. Signal Processing,1999,47(10):2879~2882.
  • 4[12]Deng Liping, Harris J G. Wavelet denoising of chirp-like signals in the Fourier domain[A]. In:Proceedings of the IEEE International Symposium on Circuits and Systems[C]. Orlando USA, 1999:Ⅲ-540-Ⅲ-543.
  • 5[13]Gunawan D. Denoising images using wavelet transform[A]. In:Proceedings of the IEEE Pacific Rim Conference on Communications, Computers and Signal Processing[C]. Victoria BC,USA, 1999:83~85.
  • 6[14]Baraniuk R G. Wavelet soft-thresholding of time-frequency representations[A]. In:Proceedings of IEEE International Conference on Image Processing[C]. Texas USA,1994:71~74.
  • 7[15]Lun D P K, Hsung T C. Image denoising using wavelet transform modulus sum[A]. In:Proceedings of the 4th International Conference on Signal Processing[C]. Beijing China,1998:1113~1116.
  • 8[16]Hsung T C, Chan T C L, Lun D P K et al. Embedded singularity detection zerotree wavelet coding[A].In:Proceedings of IEEE International Conference on Image Processing[C]. Kobe Japan, 1999:274~278.
  • 9[17]Krishnan S, Rangayyan R M. Denoising knee joint vibration signals using adaptive time-frequency representations[A]. In:Proceedings of IEEE Canadian Conference on Electrical and Computer Engineering 'Engineering Solutions for the Next Millennium[C]. Alberta Canada, 1999:1495~1500.
  • 10[18]Liu Bin, Wang Yuanyuan, Wang Weiqi. Spectrogram enhancement algorithm: A soft thresholding-based approach[J]. Ultrasound in Medical and Biology, 1999,25(5):839~846.

共引文献253

同被引文献41

引证文献3

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部