摘要
To find out the origin of dolomite, the precipitation of primary dolomite, and the formation of pores in dolomite, petrologic and geochemical characteristics of typical samples from Sichuan and Tarim Basin were analyzed based on the previous understandings, and three aspects of results were achieved.(1) A classification of dolomite origins based on petrologic features, forming environment, and time sequence was proposed, which shows clear boundaries of diagenetic and characteristic realms and evolved clues between different types of dolomite.(2) Petrographic and geochemical identification marks for different types of dolomite were presented, revealing that the orderly geochemical variation of different types of dolomite is the response to the change of forming environment of dolomite during continuous time sequence.(3) The contribution of dolomitization to the formation of porosity was re-evaluated, revealing that the porosity in dolomite was mostly attributed to the primary pores and supergene dissolution and burial dissolution, and early dolomitization was conducive to the preservation of primary pores. These understandings are of great theoretical significance for identifying the origins and types of dolomite, and can guide the prediction of dolomite reservoirs.
To find out the origin of dolomite, the precipitation of primary dolomite, and the formation of pores in dolomite, petrologic and geochemical characteristics of typical samples from Sichuan and Tarim Basin were analyzed based on the previous understandings, and three aspects of results were achieved.(1) A classification of dolomite origins based on petrologic features, forming environment, and time sequence was proposed, which shows clear boundaries of diagenetic and characteristic realms and evolved clues between different types of dolomite.(2) Petrographic and geochemical identification marks for different types of dolomite were presented, revealing that the orderly geochemical variation of different types of dolomite is the response to the change of forming environment of dolomite during continuous time sequence.(3) The contribution of dolomitization to the formation of porosity was re-evaluated, revealing that the porosity in dolomite was mostly attributed to the primary pores and supergene dissolution and burial dissolution, and early dolomitization was conducive to the preservation of primary pores. These understandings are of great theoretical significance for identifying the origins and types of dolomite, and can guide the prediction of dolomite reservoirs.
基金
Supported by the China National Science and Technology Major Project(2016ZX05004-002)