期刊文献+

双心室心脏泵内部流动非定常数值模拟

Numerical simulation of unsteady blood flows in Bi-ventricular Assist Device
下载PDF
导出
摘要 为了研究某新型离心式双心室人工心脏泵内部血液流动特性,采用CFD技术对泵设计工况下的内部流场进行数值模拟分析,获得了该心脏泵内部速度、湍流动能和切应力分布规律,同时得到了泵进口流量、作用在不同过流部件的轴向力和径向力变化情况,并对蜗壳处的压力脉动进行分析.研究结果表明:该型双心室心脏泵内部流场没有出现明显的流动死水区,满足心脏泵的抗血栓要求;泵内压力和切应力分布规律相似,整体分布均匀,满足抗溶血性能的要求;由于心脏泵的整体设计为对称结构,很好地平衡了左右叶轮的轴向力;较小的泵整体结构的径向力和转矩有利于心脏泵抵御瞬态的径向负荷;左右两泵蜗壳处的压力脉动呈现明显的正弦周期性变化规律,均含有6个波峰和6个波谷,且各监测点处压力脉动的主频为叶片通过频率,这是由于叶轮和蜗壳的动静干涉作用. The unsteady blood flow field in a new type of ventricular assist device,namely the Bi-ventricular Assist Device( BVAD) under the design condition is calculated based on a CFD method. The blood velocity,turbulent kinetic energy and shear stress,mass flow rate in the pump inlets,axial and radial thrusts acted on the different components are obtained; moreover the static pressure fluctuation in the volutes is also analyzed. The results show that there are no notable stagnant regions for thrombus formation in the device. The pressure and shear stress are distributed similarly and uniformly in the device,showing an excellent anti-hemolysis performance. Because of the symmetrical structure of the BVAD,the axial force has been basically balanced by itself. The radial force and torque on the impellers are relatively low,showing the device can endure a transient radial load well. The pressure fluctuations in the volutes vary periodically,exhibiting six peaks and six valleys in time domain. The dominated frequency at every monitoring point is the blade passing frequency of the device due to the rotor-stator interaction.
出处 《排灌机械工程学报》 EI CSCD 北大核心 2015年第7期553-559 582,582,共8页 Journal of Drainage and Irrigation Machinery Engineering
基金 国家自然科学基金资助项目(51349004)
关键词 离心式双心室心脏泵 轴向力 径向力 压力脉动 溶血 血栓 数值模拟 centrifugal Bi-ventricular Assist Device axial force radial force pressure fluctuation hemolysis thrombosis numerical simulation
  • 相关文献

参考文献11

  • 1Chung-Yang Sue,Nan-Chyuan Tsai.Human powered MEMS-based energy harvest devices[J]. Applied Energy . 2011
  • 2Daniel Timms.A review of clinical ventricular assist devices[J]. Medical Engineering and Physics . 2011 (9)
  • 3Chetan B. Patel,Joseph G. Rogers.Durable Mechanical Circulatory Support Devices[J]. Progress in Cardiovascular Diseases . 2011 (2)
  • 4Christopher A. Thunberg,Brantley Dollar Gaitan,Francisco A. Arabia,Daniel J. Cole,Alina M. Grigore.Ventricular Assist Devices Today and Tomorrow[J]. Journal of Cardiothoracic and Vascular Anesthesia . 2010 (4)
  • 5Chi Nan Pai,Tadahiko Shinshi,Akira Shimokohbe.Sensorless measurement of pulsatile flow rate using a disturbance force observer in a magnetically levitated centrifugal blood pump during ventricular assistance[J]. Flow Measurement and Instrumentation . 2009 (1)
  • 6Leok PohChua,Kang ShiuOng,Ching Man SimonYu,TongmingZhou.Leakage Flow Measurements in a Bio‐Centrifugal Ventricular Assist Device Model[J]. Artificial Organs . 2003 (10)
  • 7Paul E.Allaire,Houston G.Wood,Ramy S.Awad,Don B.Olsen.Blood Flow in a Continuous Flow Ventricular Assist Device[J]. Artificial Organs . 2001 (8)
  • 8Allaire P E,Maslen E H,Kim H C,et al.Design of a magnetic bearing-supported prototype centrifugal artificial heart pump. Tribology Transactions . 1996
  • 9Song, Xinwei,Wood, Houston G.,Olsen, Don.Computational Fluid Dynamics (CFD) Study of the 4th Generation Prototype of a Continuous Flow Ventricular Assist Device (VAD). Journal of Biomechanical Engineering Transactions of the ASME . 2004
  • 10Liu Jing,Zhang Min,John C Chai.Applications of tansformation of unstructured mesh from commercial software GAMNIT. Sciencepaper Online http://www.paper.edu.cn/releasepaper/content/200704-596 . 2007

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部