期刊文献+

ON THE GENERALIZED GLAISHER-HONG'S CONGRUENCES 被引量:1

ON THE GENERALIZED GLAISHER-HONG'S CONGRUENCES
原文传递
导出
摘要 Recently Hong Shaofang[6] has investigated the sums (np + j)-r ( with an odd prime number p 5 and n, r N) by Washington’s p-adic expansion of these sums as a power series in n where the coefficients are values of p-adic L-fuctions[12]. Herethe author shows how a more general sums (npl +j)-r,l N, may be studied by elementary methods.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2002年第1期63-66,共4页 数学年刊(B辑英文版)
关键词 Glaisher's congruence kth Bernoulli number Kummer-Staudt's congruence p-adic L-function 广义Glaisher-Hong同余 素数 Bernoulli数 Kummer-Staudt同余
  • 相关文献

参考文献1

二级参考文献9

  • 1[1]Boyd, D., A p-adic study of the partial sums of the harmonic series, Experiment Math.[2](1994),[2]87-302.
  • 2[2]Dickson, L. E., History of the Theory of Numbers, Vol. I, Chelsea, New York, 1952 (especially Chapter[2]).
  • 3[3]Glaisher, J. W. L., On the residues of the sums of products of the first p-1 numbers,and their powers,to modulus p2 or pa, Quart. J. Pure Appl. Math.,[2]1(1900),321-353.
  • 4[4]Glaisher, J. W. L., On the residues of the inverse powers of numbers in arithmetic progression, Quart.J. Pure Appl. Math.,[2]2(1901),[2]71-305.
  • 5[5]Hardy, G. H. & Wright, E. M., An Introduction to the Theory of Numbers,[4]th ed. Oxford Univ. Press,London, 1960.
  • 6[6]Ireland, K. & Rosen, M., A Classical Introduction to Modern Number Theory, Springer-Verlag, New York, 1982.
  • 7[7]Lehmer, E., On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson, Ann.Math.,[2]9(1938),[2]50-360.
  • 8[8]Washington, L., p-adic L-functions and sums of powers, J. Number Theory,[6]9(1998),[5]0-61.
  • 9[9]Washington, L., Introduction to Cyclotomic Fields, Springer-Verlag, New York, 1982.

共引文献2

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部