期刊文献+

ON NONLINEARDIFFERENTIALGALOISTHEORY 被引量:1

ON NONLINEAR DIFFERENTIAL GALOIS THEORY
原文传递
导出
摘要 Let X denote a complex analytic manifold, and let Aut(X) denote the space of invertible maps of a germ (X, a) to a germ (X, b); this space is obviously a groupoid; roughly speaking, a 'Lie groupoid' is a subgroupoid of Aut(X) defined by a system of partial differential equations.To a foliation with singularities on X one attaches such a groupoid, e.g. the smallest one whose Lie algebra contains the vector fields tangent to the foliation. It is called 'the Galois groupoid of the foliation'. Some examples are considered, for instance foliations of codimension one, and foliations defined by linear differential equations; in this last case one recuperates the usual differential Galois group.
作者 B.MALGRANGE
机构地区 Universite
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2002年第2期219-226,共8页 数学年刊(B辑英文版)
关键词 Differential Galois group Complex analytic manifold Lie groupoid 非线性微分方程 微分Galois群 复解析流形 包络 Lie广群 Lie对称 Galois对称
  • 相关文献

参考文献15

  • 1Audin,M.,Intégrabilité et non-intégrabilité de systèmes hamiltoniens,d'après S.Ziglin,J.MoralèsRuiz,J.-P.Ramis… [R],Séminaire Bourbaki,884(2000/2001).
  • 2Belliard,M.,Liousse,I.& Loray,F.,The generic rational differential equation dw/dz = P(z,w)/Q(z,w)carries no interesting transverse structure [J],Ergodic Theory and Dyn.Syst.,21(2001),1599-1607.
  • 3Boalch,P.,Symplectic manifolds and isomonodromic deformations [J],to appear in Advances in Mathematics.
  • 4Deligne,P.,Equations différentielles à points singuliers réguliers [M],Lecture Notes in Math.,163,Springer-Verlag,1970.
  • 5Deligne,P.,Catégories tannakiennes,The Grothendieck Festschrift,2 [J],Progress in Math.,Birkhauser,87(1990),111-195.
  • 6Godbillon,C.,Feuilletages,Etudes géométriques [M],Birkhauser,1991.
  • 7Grothendieck,A.,Techniques de construction et théorèmes d'existence en géométrie algébrique,III [R],Séminaire Bourbaki,212,(1960/61).
  • 8Hitchin,N.J.,Frobenius manifolds (notes by D.Calderbank) [A],in: Gauge theory and symplectic geometry [M],J.Hurtubise and F.Laborde editors,vol.488 of NATO ASI series C: Maths & Physics,Kluwer,1995.
  • 9Malgrange,B.,Le groupoide de Galois d'un feuilletage [M],to be published in l'Enseignement Mathématique.
  • 10Malgrange,B.,La variété caractéristique d'un système différentiel analytique,Ann.Inst.Fourier (Grenoble) 50-2(2000),491-518.

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部