期刊文献+

THE NAGUMO EQUATION ON SELF-SIMILAR FRACTAL SETS

THE NAGUMO EQUATION ON SELF-SIMILAR FRACTAL SETS
原文传递
导出
摘要 The Nagumo equation ut = △u+ bu(u-a)(1-u), t>0is investigated with initial data and zero Neumann boundary conditions on post-critically finite (p.c.f.) self-similar fractals that have regular harmonic structures and satisfy the separation condition. Such a nonlinear diffusion equation has no travelling wave solutions because of the 'pathological' property of the fractal. However, it is shown that a global Holder continuous solution in spatial variables exists on the fractal considered. The Sobolev-type inequality plays a crucial role, which holds on such a class of p.c.f self-similar fractals. The heat kernel has an eigenfunction expansion and is well-defined due to a Weyl's formula. The large time asymptotic behavior of the solution is discussed, and the solution tends exponentially to the equilibrium state of the Nagumo equation as time tends to infinity if b is small.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2002年第4期519-530,共12页 数学年刊(B辑英文版)
关键词 Fractal set Spectral dimension Sobolev-type inequality Strong (Weak) solution Nagumo方程 自相似分形集 非线性扩散方程 行波解 Holer连续解 Sobolev不等式 特征函数 Weyl公式 非对称行为
  • 相关文献

参考文献30

  • 1Aronson, D. G. & Weinberger, H. F., Nonlinear diffusion in population genetics, combustion and nerve propagation [J], Lect. Notes Math., 446(1975), 5-49.
  • 2Barlow, M. T., Diffusions on fractals [A], Lectures on probability theory and statistics [M], Ecole d'Ete de Probabilities de Saint-Flour XXV-1995, 1-121. Lect. Notes Math. 1690, Springer, 1998.
  • 3Barlow, M. T. & Bass, R. F., Brownian motion and harmonic analysis on Sierpinski carpets [J], Canadian J. Math., 51:4(1999), 673-744.
  • 4Barlow, M. T. & Perkins, E. A., Brownian motion on the Sierpinski gasket [J], Proba. Theory Related Fields, 79(1988), 543-623.
  • 5Chen, Z. X. & Guo, B. Y., Analytic solutions of the Nagumo equation [J], IMA J. Appl. Math., 48(1992),407-415.
  • 6Chow, S. N. & Shen, W. X., Dynamics in a discrete Nagumo equation: spatial topological chaos [J],SIAM J. Appl. Math., 55(1995), 1764-1781.
  • 7Conway, E., Hoff, D. & Smoller, J., Large time behavior of solutions of systems of nonlinear reactiondiffusion equations [J], SIAM J. Appl. Math., 35(1978), 1-16.
  • 8Dalrymple, K., Strichartz, R. S. & Vinson, J. P., Fractal differential equations on the Sierpinski gasket[J], Z. Fourier Anal. Appl., 5(1999), 203-284.
  • 9Dodziuk, J., Eigenvalues of the Laplacian and the heat equation [J], Amer. Math. Monthly, 88(1981),686-695.
  • 10Falconer, K. J., Fractal geometry-mathematical foundation and applications [M], John Wiley, 1992.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部