期刊文献+

BRILL-NOETHER MATRIX FOR RANK TWO VECTOR BUNDLES

BRILL-NOETHER MATRIX FOR RANK TWO VECTOR BUNDLES
原文传递
导出
摘要 Let X be an arbitrary smooth irreducible complex projective curve, E (?)X a rank two vector bundle generated by its sections. The author first represents ?as a triple {D1,D2,f}, where D1 , D2 are two effective divisors with d = deg(D1) + deg(D2), and f ∈ H?X, [D1] |D2) is a. collection of polynomials. E is the extension of [D2] by [D1] which is determined by f. By using / and the Brill-Noether matrix of D1+D2, the author constructs a 2g × d matrix WE whose zero space gives Im{H0(X,[D1]) (?) H0(X, [D1] |D1)}(?) Im{H?X, E) (?) H0(X,[D2]) (?) H0(X, [D2]|D2)} From this and H0(X,E) = H0(X,[D1]) (?)Im{H0(X,E) (?) H0(X, [D2])}, it is got in particular that dimH0(X, E) = deg(E) - rank(WE) + 2.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2002年第4期531-538,共8页 数学年刊(B辑英文版)
基金 Project supported by the National Natural Science Foundation of China.
关键词 Brill-Noether matrix Vector bundle Effective divisor Brill-Noether矩阵 向量丛 射影曲线 Laurent尾部 截面 有效除子
  • 相关文献

参考文献4

  • 1Arbarello, E., Cornaba, M., Griffiths, P. & Harris, J., Geometry of algebraic curves [M], Vol. I, SpringerVerlag, N. Y. 1984.
  • 2Atiyah, M. F., Vector bundles on elliptic curves [J], Proc. London Math. Soc., 7(1957), 414-452.
  • 3Lange, H. & Narasimhau, M. S., Maximal subbundles of rank two bundles on curves [J], Math. Ann.,266(1983), 55-72.
  • 4Tan, X.J., Some results on the existence of rank two special stable vector bundles [J], Manuscripta Math., 75(1992), 365-373.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部