期刊文献+

NOTE ON REGULAR D-OPTIMAL MATRICES

NOTE ON REGULAR D-OPTIMAL MATRICES
原文传递
导出
摘要 Let A be a j x d (0,1) matrix. It is known that if j = 2k - 1 is odd, then det(AAT) ≤ (j+1)((j+1)d/4j)j; if j is even, then det(AAT) ≤ (j+1)((j+2)d/4(j+1))j. A is called a regular D-optimal matrix if it satisfies the equality of the above bounds. In this note, it is proved that if j = 2k - 1 is odd, then A is a regular D-optimal matrix if and only if A is the adjacent matrix of a (2k - 1, k, (j + l)d/4j)-BIBD; if j = 2k is even, then A is a regular D-optimal matrix if and only if A can be obtained from the adjacent matrix B of a (2k + 1,k + 1,(j + 2)d/4(j +1))-BIBD by deleting any one row from B. Three 21 x 42 regular D-optimal matrices, which were unknown in [11], are also provided.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2003年第2期215-220,共6页 数学年刊(B辑英文版)
基金 Project supported by the Science Foundation of China for Postdoctors (No.5(2001)).
关键词 Regular .D-optimal matrices SIMPLEX Weighing design 正则优化矩阵 边界 邻接矩阵 单形 加权设计 行列式
  • 相关文献

参考文献12

  • 1Abel, R. & Greig, M., BIBDs with small block size, in The CRC Handbook of Combinatorial Designs,C. J. Colbourn and J. H. Dinitz (eds.), CRC Press, Boca Raton, 1996.
  • 2Beth, T., Jungnickel, D. & Lenz, H., Design theory, Combridge University Press, London, 1986.
  • 3Bhat-Nayak, V., Wirmani-Prasad, A., Note: Three new dicyclic solutions of (21, 42, 20, 10, 9)-designs,J. Combib. Theory, Ser. A, 40(1985), 427-428.
  • 4Craigen, R., Hadamard matrices and designs, in The CRC Handbook of Combinatorial Designs, C. J.Colbourn and J. H. Dinitz (eds.), CRC Press, Doca Raton, 1996.
  • 5Hall, M., Combinatorial theory, Blaisdell Publishing Company, 1967.
  • 6Hotelling, H., Some improvements in weighting and other experiment techniques, Annals of Math. Stat.,15(1944), 297-306.
  • 7Hudelson, M., Klee, V. & Larman, D., Largest j-simplices in d-cubes: Some relatives of the Hadamard maximum determinant problems, Linear Algebra Appl., 241-243(1996), 519-598.
  • 8Mathon, R. & Rosa, A., 2-(v, k, λ) designs of small order, in The CRC Handbook of Combinatorial Designs, C. J. Colbourn and J. H. Dinitz (eds.), CRC Press, Doca Raton, 1996.
  • 9Neubauer, M. & Radelifle, A. J., The maximum determant of (±1) matrices, Linear Algebra Appl.,257(1997), 289-306.
  • 10Neubauer, M., Watkins, W. & Zeitlin, J., Maximum j-simplices in the real d-dimensional unit cube, J.Combin. Theory, Ser. A, 80(1997), 1-12.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部