NONLINEAR BOUNDARY STABILIZATION OF WAVE EQUATIONS WITH VARIABLE COEFFICIENTS
被引量:6
NONLINEAR BOUNDARY STABILIZATION OF WAVE EQUATIONS WITH VARIABLE COEFFICIENTS
摘要
The wave equation with variable coefficients with a nonlinear dissipative boundary feedbackis studied. By the Riemannian geometry method and the multiplier technique, it is shown thatthe closed loop system decays exponentially or asymptotically, and hence the relation betweenthe decay rate of the system energy and the nonlinearity behavior of the feedback function isestablished.
基金
Project supported by the National Natural Science Foundation of China(No.60174008).
参考文献10
-
1Aubin, J. P., Un theoreme de compacite, C. R. Acad. Sci., 256(1963), 5042-5044.
-
2Bardos, C., Lebeau, G. & Ranch, J., Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Cont. Optim., 30(1992), 1024-1065.
-
3Conrad, F. & Rao, B., Decay of solutions of wave equation in a star-shaped domain with nonlinear boundary feedback, Asymptotic Analysis, 7(1993), 159-177.
-
4Komornik, V., Exact controllability and stabilization, Research in Applied Mathematics, P. G. Ciarlet and J. Lions (eds.), Masson/John Wiley Copublication, 1994.
-
5Komornik, V., On the nonlinear boundary stabilization of the wave equation, Chin. Ann. Math.,14B:2(1993), 153-164.
-
6Komornik, V. & Zuazua, E., A direct method for the boundary stabilization of the wave equation, J.Math. Pures Appl., 69(1990), 33-54.
-
7Lasiecka, I. & Tataru, D., Uniform boundary stabilization of semilinear wave equation with nonlinear boundary condition, Diff. Int. Eqs., 6(1993), 507-533.
-
8Wu, H., Shen, L. L. & Yu, Y. L., Introduction to Riemannian geometry (in Chinese), Beijing University Press, Beijing, 1989.
-
9Yao, P. F., On the observability inequality for exact controllability of wave equations with variable coefficients, SIAM J. Cont. Optim., 37(1999), 1568-1599.
-
10Zuazua, E., Uniform stabilization of the wave equation by nonlinear boundary feedback, SIAM J. Cont.Optim., 28(1990), 466-477.
引证文献6
-
1JIACHAOHUA,FENGDEXING.THE EXPONENTIAL STABILIZATION FOR A SEMILINEAR WAVE EQUATION WITH LOCALLY DISTRIBUTED FEEDBACK[J].Chinese Annals of Mathematics,Series B,2005,26(3):323-334.
-
2柴树根,刘康生.变系数波方程振动传递的边界镇定[J].数学年刊(A辑),2005,26(5):605-612.
-
3呼青英,张宏伟.具时间依赖系数和耗散边界的非线性波方程的能量指数衰减性[J].纯粹数学与应用数学,2006,22(3):386-391.
-
4Shugen CHAI.UNIFORM DECAY RATE FOR THE TRANSMISSION WAVE EQUATIONS WITH VARIABLE COEFFICIENTS[J].Journal of Systems Science & Complexity,2011,24(2):253-260.
-
5雷娟.变系数紧耦合波动方程组的非线性边界镇定(英文)[J].南京信息工程大学学报(自然科学版),2011,3(2):183-189.
-
6白忠玉,陈娜娜.具有边界反馈的波方程系统解的能量衰减估计[J].西北师范大学学报(自然科学版),2022,58(4):39-44.
-
1方锦清,M.K.Ali.混沌控制与同步的一种统一描述和实现方法[J].中国原子能科学研究院年报,1997(1):59-59.
-
2冯绍继,冯德兴.Boundary stabilization of wave equations with variable coefficients[J].Science China Mathematics,2001,44(3):345-350. 被引量:5
-
3ZHANG Weitao,FENG Dexing(Institute of Systems Science, Academia Sinica, Beijing 100080, China).ON THE BOUNDARY STABILIZATION OF WAVE EQUATION WITH VARIABLE COEFFICIENT[J].Systems Science and Mathematical Sciences,1997,10(3):275-281. 被引量:2
-
4Qing-xuYan,Hui-chaoZou,De-xingFeng.Nonlinear Boundary Stabilization of Nonuniform Timoshenko Beam[J].Acta Mathematicae Applicatae Sinica,2003,19(2):239-246. 被引量:1
-
5JIA Chaohua.On the Decay Property of Solutions of Viscous Burgers Equation with Boundary Feedback[J].Journal of Partial Differential Equations,2010,23(2):194-202.
-
6柳怀.特征为3的有限域上n元非奇异反馈函数的计数[J].湖南广播电视大学学报,2002(1):75-76.
-
7王传玉.关于某一类非奇反馈函数的自同构函数[J].工科数学,1997,13(3):49-51.
-
8YAN Qingxu (Institute of Systems Science, Chinese Academy of Sciences, Beijing 100080, China).BOUNDARY STABILIZATION OF TIMOSHENKO BEAM[J].Systems Science and Mathematical Sciences,2000,13(4):376-384. 被引量:1
-
9王雷,韩忠杰.星形热弹性网络系统的稳定性及Riesz基性质[J].应用泛函分析学报,2014,16(2):105-116.
-
10朱士信.一类非奇反馈函数的自同构函数[J].大学数学,1995,16(3):99-102. 被引量:1