期刊文献+

NONLINEAR BOUNDARY STABILIZATION OF WAVE EQUATIONS WITH VARIABLE COEFFICIENTS 被引量:6

NONLINEAR BOUNDARY STABILIZATION OF WAVE EQUATIONS WITH VARIABLE COEFFICIENTS
原文传递
导出
摘要 The wave equation with variable coefficients with a nonlinear dissipative boundary feedbackis studied. By the Riemannian geometry method and the multiplier technique, it is shown thatthe closed loop system decays exponentially or asymptotically, and hence the relation betweenthe decay rate of the system energy and the nonlinearity behavior of the feedback function isestablished.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2003年第2期239-248,共10页 数学年刊(B辑英文版)
基金 Project supported by the National Natural Science Foundation of China(No.60174008).
关键词 Wave equations Nonlinear boundary feedback Exponential decay Asymptotic decay Riemannian manifold 非线性边界稳定 波动方程 系数 Riemann流形 反馈函数 指数衰减 渐近衰减 系统能量
  • 相关文献

参考文献10

  • 1Aubin, J. P., Un theoreme de compacite, C. R. Acad. Sci., 256(1963), 5042-5044.
  • 2Bardos, C., Lebeau, G. & Ranch, J., Sharp sufficient conditions for the observation, control, and stabilization of waves from the boundary, SIAM J. Cont. Optim., 30(1992), 1024-1065.
  • 3Conrad, F. & Rao, B., Decay of solutions of wave equation in a star-shaped domain with nonlinear boundary feedback, Asymptotic Analysis, 7(1993), 159-177.
  • 4Komornik, V., Exact controllability and stabilization, Research in Applied Mathematics, P. G. Ciarlet and J. Lions (eds.), Masson/John Wiley Copublication, 1994.
  • 5Komornik, V., On the nonlinear boundary stabilization of the wave equation, Chin. Ann. Math.,14B:2(1993), 153-164.
  • 6Komornik, V. & Zuazua, E., A direct method for the boundary stabilization of the wave equation, J.Math. Pures Appl., 69(1990), 33-54.
  • 7Lasiecka, I. & Tataru, D., Uniform boundary stabilization of semilinear wave equation with nonlinear boundary condition, Diff. Int. Eqs., 6(1993), 507-533.
  • 8Wu, H., Shen, L. L. & Yu, Y. L., Introduction to Riemannian geometry (in Chinese), Beijing University Press, Beijing, 1989.
  • 9Yao, P. F., On the observability inequality for exact controllability of wave equations with variable coefficients, SIAM J. Cont. Optim., 37(1999), 1568-1599.
  • 10Zuazua, E., Uniform stabilization of the wave equation by nonlinear boundary feedback, SIAM J. Cont.Optim., 28(1990), 466-477.

同被引文献3

引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部