期刊文献+

用于信号特征提取和重建的脊提取算法 被引量:3

CHARACTERIZATION EXTRACTION AND RECONSTRUCTION OF SIGNALS BY THE RIDGES OF CONTINUOUS WAVELET TRANSFORM
下载PDF
导出
摘要 该文论述了以信号在连续小波变换域上形成的脊作为信号特征进行信号的特征提取和信号重建的方法,并且将该理论应用到话音信号的处理中。仿真实验表明,对于最高频率为4kHz的语音信号来说,提取3~5条脊即可以很好地刻划信号的全部信息,重建的信号在主观感觉上达到了较好的效果。 The theory of detecting ridges in the modulus of the continuous wavelet transform is presented as well as reconstructing signal by using information on ridges. Application of the theory on speech signal is discussed in detail. Experimental result shows that as for signals with highest frequency at 4kHz, 3~5 ridges is enough to describe all of the information contained in the signal. The reconstructed signal reserves most of the necessary information of the original signal.
出处 《电子与信息学报》 EI CSCD 北大核心 2003年第7期878-883,共6页 Journal of Electronics & Information Technology
关键词 连续小波变换 脊提取 信号重建 信号处理 Continuous wavelet transform, Ridge extraction, Signal reconstruction
  • 相关文献

参考文献5

  • 1S. Mallat, S. Zhang, Matching pursuit with time-frequency dictionaries, IEEE Trans. on Signal Processing, 1993, SP-41(12), 3397-3415.
  • 2N. Delprat, et al., Asymptotic wavelet and Gabor analysis: Extraction of instantaneous frequencies, IEEE Trans. on Info. Theory, 1992, IT-38(2), 644-664.
  • 3R. Carmona, W. L. Hwang, B. Torresani, Characterization of signals by the ridges of their wavelet transforms, IEEE Trans. on Signal Processing, 1997, SP-45(10), 2586-2590.
  • 4R. Carmona, W. L. Hwang, B. Torresani, Multiridge detection and time-frequency reconstruction,IEEE Trans. on Signal Processing, 1999, SP-47(2), 480-492.
  • 5R. Carmona, W. L. Hwang, B. Torresani, Practical Time-Frequency Analysis, San Diego, Academic Press, 1998, Chapter 8.

同被引文献30

  • 1赵义正,杨景曙.基于分数阶Fourier变换的瞬时频率估计方法[J].安徽大学学报(自然科学版),2005,29(1):44-49. 被引量:5
  • 2M.Takeda,K.Mutoh.Fourier transform profilometry for the automatic measurement 3-D object shapes[J].Appl.Opt.,1983,22(24):3977-3982.
  • 3Su Xianyu,Chen Wenjing.Fourier transform profilometry:a review[J].Optics and Laser Engineering,2001,35(5):263-284.
  • 4M.Afifi,A.Fassi-Fihri,et.al.Paul Wavelet-Based Algorithm for Optical Phase Distribution Evaluation [J].Optics Communications,2002,211(1-6):47-51.
  • 5李微微 冯瑞姝.人工神经网络对爆炸物太赫兹光谱的识别[J].光学学报,2009,29:6-269.
  • 6Zhang QH,Benveniste A.Wavelet networks.IEEE Trans Neural Network.1 992.3(6):889-898.
  • 7Mallat S,Zhong S.Characterization of signals from multiscale edges.IEEE Trans PAM I,1992,14(7):710-732.
  • 8Carmona R.Characterization of signals bythe ridges of their wavelet transforms.IEEE Trans On Signal Processing,1997,SP-49(10),2586-2590.
  • 9Licheng Jiao.Multiwavelet Neural Network and Its Approximation Properties.IEEE Trans on Neural Networks,2001,9:1060-1066.
  • 10Xavier C, Fabriee B, Jean P D. Early detection of fa- tigue damage on rolling element bearings using adapted wavelet [J]. Trans. ASME Journal of Vibration and Acoustics, 2007, 129(4) :495-506.

引证文献3

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部