摘要
性能曲线是反映泵变工况运行情况的一类曲线,通常该曲线均是通过实验或是以已有数据为基础的性能换算而获得,但前者费用昂贵,后者准确性差 为此,通过对BP人工神经网络模型的分析和研究,提出了利用BP神经网络技术进行泵站机组泵的性能预测的新方法,并以16CJ80型全调节轴流泵为例,进行了泵的性能预测,经济、可靠地获得了泵的性能曲线 简述了该BP神经网络所存在的缺陷及其改进的有效手段 这一技术的成功应用提高了泵站机组的可靠性、运行质量,同时也推动了神经网络等新技术。
Based on the analysis and study of BP neural network model, a new method for predicting the performance of the pumping station system is presentedThe performance of a 16CJ80 series fulladjustment axial pump is studied as an example and its characteristics is economically and reliably obtained. The effective ways to improve the defects of the BP neural network is summarized The successful application of this technique improves the reliability and running quality of the pumping station system
出处
《江苏大学学报(自然科学版)》
EI
CAS
2003年第4期45-48,共4页
Journal of Jiangsu University:Natural Science Edition
基金
江苏省应用基础基金资助项目(BJ2000006)
关键词
泵站
性能预测
BP神经网络
pumping station
prediction of the performance
BP neural network