期刊文献+

有限状态Q过程积分分布及在衍生证券定价中的应用 被引量:1

Distribution of Q Process Integral and its Application in the Black and Scholes Equation
下载PDF
导出
摘要 原始Black-Scholes公式中扩散系数σt被视为常数,无法表现金融数据收益率厚尾和波动聚类的统计特征,本文尝试用有限状态Q过程描述扩散系数σt,理论和实证的结果都优于原始Black-Scholes公式。解决问题的核心是有限状态Q过程积分分布的近似计算和相应的统计问题。 Options are financial instruments designed to protect investors from the stock market randomness. In 1973, Black, Scholes and Merton proposed a very popular option pricing method using stochastic differential equations within the Ito interpretation. We give a analysis and numerical simulations for a Black and Scholes equation with Q process volatility.
作者 田剑波 郑琳
出处 《应用概率统计》 CSCD 北大核心 2003年第3期303-312,共10页 Chinese Journal of Applied Probability and Statistics
  • 相关文献

参考文献7

  • 1John C.Hull.期权、期货和衍生证券[M].华夏出版社,1997..
  • 2龚光鲁.应用概率与随机过程[M].北京大学出版社,2001..
  • 3龚光鲁.随机过程引论[M].北京大学出版社,1992..
  • 4Black, F. and M. Seholes, The pricing of options and corporate liabilities, Political Economy, 3(1973), 637-659.
  • 5Liu Zhong, Option price estimate and risk estimate with SV model, Applied Statistic, 16(2001), 365-371 (in Chinese).
  • 6Yong Jiongmin, Mathematical Finance - Theory and Practice, Higher Education Press, 2000.
  • 7Bollerslev, T., Generalised autoregressive conditional heteroskedasticity, J. Econoraetrics, 31(1986), 307-328.

共引文献2

同被引文献7

  • 1Das S R, Sundaram R K. Of smiles and smirks: A term structure perspective[J]. Journal of Financial and Quantitative Analysis, 1999, 34: 211-239.
  • 2Follmer H, Schweizer M. Hedging of contingent claims under incomplete information[C]//Davis M H A, Elliott R J (eds.) Applied Stochastic Analysis. London: Gordon and Breach, 1990, 389-414.
  • 3Aase K K. Contingent claims valuation when the security price is a combination of an Ito process and a random point process[J]. Stochastic Processes and their Applications, 1988, 28: 185-220.
  • 4Merton R C. Option pricing when underling process of stock returns is discontinuous[J]. Journal of Financial Economics, 1976, 3: 124-144.
  • 5Hull J, White A. An analysis of the bias in option pricing caused by a stochastic volatility[J]. Journal of Finance, 1987, 42: 281-300.
  • 6Romano M, Touzi N. Contingent claims and market completeness in a stochastic volatility model[J]. Mathematical Finance, 1997, 7: 399-412.
  • 7Romano M, Touzi N. Contingent claims and market completeness in a stochastic volatility model[J]. Mathematical Finance, 1997, 7: 399-412.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部