期刊文献+

一种改进的最大似然法用于地物识别 被引量:11

Application of an improved maximum-likelihood algorithm in remote sensing classification
下载PDF
导出
摘要 该文分析了试验区内的建筑、耕地、园地、林地、水体等 5种典型地物灰度的概率分布特点 ,结果表明这 5种地物的灰度概率分布并非标准的正态分布 ,而是近似的正态分布。通过对训练样本进行高斯正态化处理 ,即用高斯正态函数修正训练样本的数据 ,使参与分类训练样本的灰度概率分布成为标准的正态分布 ,进而修正类条件概率密度函数 ,尔后用最大似然法进行分类 ,结果使分类精度提高 5 .2 5 %。 This paper analyzed the probability distribution of pixel gray of the following 5 kinds of objects such as building, farmland, garden plot, woodland and water. The results showed that the probability distributsion of pixel gray of the 5 kinds of objects was not standard normal distribution, but approximately normal distribution. This paper revised the training samples with Gaussian normal function, the probability distribution of pixel gray of the revised training sample was standard normal distribution. So condition probability density function of class was modified, the classification accuracy for maximum likelihood algorithm increased by 5.25%.
出处 《农业工程学报》 EI CAS CSCD 北大核心 2003年第4期54-57,共4页 Transactions of the Chinese Society of Agricultural Engineering
关键词 最大似然法 概率分布 高斯正态函数 maximum likelihood algorithm probability distribution Gaussian normal function
  • 相关文献

参考文献9

  • 1北京林学院.数理统计[M].中国林业出版社,1979..
  • 2遥感研究会(日)编 刘勇卫 贺雪鸿译.遥感精解[M].北京:测绘出版社,1993.200,288-289.
  • 3Iversen.G.R著 吴喜之 程博 柳林旭 等译.统计学[M].北京:高等教育出版社,2000.119~129.
  • 4Ince F. Maximum likelihood classification, optimal or problematic? A comparison with the nearest neighbor classification[J ]. Intl J Remote Sensing, 1987,12 : 1892-1838.
  • 5Paola J D, Schowenger R A. A detailed comparison of back propagation neural network and maximum-likelihood classifiers for urban land use classification [J]. IEEE Trans on Geoscience and Remote sensing, 1995, 33 (4):981 - 996.
  • 6Wen C Y, Acharya R. Self-similar texture characterization using a Fourier-domain maximum likelihood estimation method [J]. Pattern Recognition Letters, 1998,19:735-739.
  • 7Solberg S, Jain A K, Taxt T. Multisource classification of remotely sensed data:Fusion of Landsat TM and SAR Images[J]. IEEE Transactions on Geoscience and Remote Sensing, 1994,32(4):768-777.
  • 8Mather M P. Preprocessing of training data for multispectral image classification[A]. Advances in digital image processing, proceeding of the annual conference of the remote sensing society [C ], Nottingham, 1987 : 111-120.
  • 9Davis L S, Clearman M, Aggarwal J K. An empirical evaluation of generalized co-occurrence matrices[J]. IEEE Trans. , 1981, PAMI--2:214-221.

共引文献32

同被引文献151

引证文献11

二级引证文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部