期刊文献+

维生素A棕榈酸酯冻干脂质体的制备及稳定性 被引量:5

Preparation of vitamin A palmitate(VAP) freeze-dried liposomes and study of its stability
下载PDF
导出
摘要 目的制备维生素A棕榈酸酯(VAP)冻干脂质体,并对其稳定性进行研究。方法用薄膜分散法制备维生素A棕榈酸酯脂质体,用正交设计法优化处方和制备工艺。以50 g·L-1海藻糖-50 g·L-1蔗糖(质量比1∶1)为冻干保护剂进行冻干。采用HPLC法测定VAP脂质体中维生素A棕榈酸酯的含量及包封率。结果 VAP脂质体冻干前平均粒径为(90.06±2.88)nm,zeta电位为-(5.08±0.18)m V,平均包封率为(90.06±1.73)%,冻干后复溶平均粒径为(83.40±0.78)nm,zeta电位为-(3.65±0.86)m V,平均包封率为(90.84±0.80)%。VAP冻干脂质体在4℃保存3个月稳定。结论以最佳处方和工艺制备的VAP脂质体包封率高、重现性好。VAP冻干脂质体对光照和高温不稳定,应避光储存在4℃冰箱中。 Objective To prepare vitamin A palmitate(VAP) freeze-dried liposomes and study its stability. Methods The thin film dispersion method was used to prepare VAP liposomes and the orthogonal design method was employed to optimize the prescription and preparation technology. 50 g·L-1 trehalose and 50 g·L-1sucrose(1∶1) was used as protective agent of freeze-drying. High performance liquid chromatography(HPLC) method was employed to evaluate the content and coating rate of vitamin A palmitate in VAP liposomes. Results Prior to lyophilization, average particle size was(90.06±2.88) nm, zeta potential was –(5.08±0.18) m V, average coating rate at(90.06±1.73)%, after lyophilization, the average particle size was(83.40±0.78) nm, zeta potential was –(3.65±0.86) m V, average coating rate was(90.84±0.80)% of the dissolving liposomes. VAP freeze-dried liposomes was stable at 4 ℃ for 3 months. Conclusion The results showed that encapsulation efficiency of VAP liposomes is high and has a good reproducibility, which was prepared by the optimized formulation and technology. VAP freeze-dried liposome is not stable when exposure to light or at high temperature. It stores at 4 oC in the fridge.
出处 《中国药剂学杂志(网络版)》 2016年第2期43-52,共10页 Chinese Journal of Pharmaceutics:Online Edition
关键词 药剂学 冻干脂质体 薄膜分散法 维生素A棕榈酸酯 稳定性 pharmaceutics freeze-dried liposomes film dispersion method vitamin A palmitate stability
  • 相关文献

参考文献6

二级参考文献42

  • 1van Winden ECA, Zhang W, Crommelin DJA. Effect of freezing rate on the stability of liposomes during freeze-drying and rehydration [J]. Pharm Res, 1997, 14 (9): 1151-1160.
  • 2Talsma H, van Steenbergen MJ, Crommelin DJA. The cryopreservation of liposomes: 3. Almost complete retention of a water-soluble marker in small liopsomes in a cryoprotectant containing dispersion after a freezing/thawing cycle[J], Int J Pharm, 1991, 77(2-3): 119-126.
  • 3Higgins J, Hedges NA, Olliff CJ, et al. Factors influencing cryoprotective activity and drug leakage from liposomes after freezing [J]. J Pharm Pharmacol, 1986, 38 (4): 259-263.
  • 4Zingel C, Sachse A, Roessling GL, et al. Lyophilization and rehydration of iopromide-carrying liposomes [J]. Int J Pharm,1996, 140(1): 13-24.
  • 5Komatsu H, Saito H, Okada S, et al. Effects of the acyl chain composition of phosphatidylcholines on the stability of freezedried small liposomes in the presence of maltose [J]. Chem Phys Lipids, 2001, 113(1-2): 29-39.
  • 6Tanaka K, Takeda T, Fujii K, et al. Freeze-drying of liposomes prepared by sonication and extrusion techniques [J].Chem Pharm Bull, 1991, 39 (10): 2653-2656.
  • 7Desai TR, Wong JP, Hancock RE, et al. A novel approach to the pulmonary delivery of liposomes in dry powder form to eliminate the deleterious effects of milling [J]. J Pharm Sci,2002, 91 (2): 482-491.
  • 8Zhang JA, Anyarambhatla G, Ma L, et al. Development and characterization of a novel Cremophor EL free liposomebased paclitaxel (LEP-ETU) formulation [J]. Eur J Pharm Biopharm, 2005, 59 (1): 177-187.
  • 9Cortesi R, Esposito E, Nastruzzi C. Effect of DNA complexation and freeze-drying on the physicochemical characteristics of cationic liposomes [J]. Antisense Nucleic Acid Drug Dev, 2000, 10 (3): 205-215.
  • 10Crowe JH, Crowe LM. Factors affecting the stability of dry liposomes [J]. Biochim Biophys Acta, 1988, 939 (2): 327-334.

共引文献53

同被引文献37

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部