期刊文献+

q-微分算子代数(英文)

q-Differential Operators Algebras
下载PDF
导出
摘要 本文研究了q 微分算子的代数性质 ,决定了q 微分算子的结合代数的导代数 .在q In this paper,the properties of the algebras of q differential operators are studied. The derivation algebra of the associative algebra of q differential operators is determined. They are consistent with those of differential operators algebras if q=1.
作者 刘东 夏利猛
出处 《南华大学学报(理工版)》 2003年第2期71-74,共4页 Journal of Nanhua University(Science & Engineering)
基金 SupportedbytheShanghaiPriorityAcademicDisciplineFoundationandtheScienceFoundationoftheUniversityDoctoralProgramCNCE
关键词 q-微分算子代数 结合代数 导代数 Laurent多项式 复数域 Derivation q differential operators
  • 相关文献

参考文献12

  • 1Famsteiner R. Derivations and extensions of finitely gengrated Graded Lie algebras[J]. J. Algebra, 1988, 118(1) :34 - 45.
  • 2Humphreys J E. Introduction to Lie Algebras and Representation Theory [ M ]. Springer - Verlag,1972.
  • 3Hu Naihong. q-Witt algebras, q-Lie algebras, qholomorph structure and representations [ J ]. Algebra Colloq, 1999,6( 1 ) : 51 - 70.
  • 4Jiang C, Meng D. The derivation algebra of the associative algebra Cq [ X, Y, X^-1, Y^-1] [ J ]. Communication in Algebra, 1992,26(6) : 1723 - 1736.
  • 5Kassel C. Cyclic homology of differential operators, the Virasoro algebra and a q-analogue [ J ].Commun. Math. Phys, 1992,164: 343 - 356.
  • 6Kirkman E,Procesi C,Small L. A q-anlog for the virasoro algebra [ J ]. Commun. in Algebra, 1994,22(10) :3755 - 3774.
  • 7Liu D, Hu N. 2 - Cocycles on the algebras of qdifferential operators, Preprint.
  • 8Su Y. Derivations of the algebras of Weyl type,Preprint.
  • 9Xu H, Lu C. The derivation algebras of n - differential operators algebra, preprint.
  • 10赵开明.Lie Algebra of Derivations of the Algebra of Differential Operators[J].Chinese Science Bulletin,1993,38(10):793-798. 被引量:4

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部