MINIMAL SURFACES IN 3-DIMENSIONAL SOLVABLE LIE GROUPS
MINIMAL SURFACES IN 3-DIMENSIONAL SOLVABLE LIE GROUPS
摘要
The author studies minimal surfaces in 3-dimensional solvable Lie groups with left invariantRiemannian metrics. A Weierstraβ type integral representation formula for minimal surfaces isobtained.
基金
Partially supported by Grant-in-Aid for Encouragement of Young Scientists (No. 12740051), Japan Society for Promotion of Science.
参考文献22
-
1Balan, V. & Dorfmeister, J., A Weierstrass-type representation for harmonic maps from Riemann surfaces to general Lie groups, Balkan J. Geom. Appl., 5(2000), 7-37 (Available at http://www.emis.de/journals/BJGA/5.1/2.html).
-
2Blair, D. E., Contact manifolds in Riemannian geometry, Lecture Notes in Math. 509 (1976), SpringerVerlag, Berlin.
-
3Boeckx, E., Bueken, P. & Vanhecke, L., ψ-symmetric contact metric spaces, Glasgow Math. J., 41(1999), 409-416.
-
4Borghero, F. & Caddeo, R., Une structure de Séparabilité et Géodésiques dans les Huit Géométries Tridimensionalles de Thurston, Rend. Mat. Appl., (7) 9(1989), 607-624.
-
5Bryant, R., Surfaces of mean curvature one in hyperbolic space , Astérisque, 154-155(1987), 321-347.
-
6Bryant, R., An introduction to Lie groups and symplectic geometry, Geometry and Quantum Field Theory (D. S. Freed and K. K. Uhlenbeck, eds.), IAS/Park City Math. Series, vol. 1, Amer. Math. Soc.,1991, pp. 5-181.
-
7Burstall, F. E., & Pedit, F., Harmonic maps via Adler-Kostant-Symes theory, Harmonic Maps and Integrable Systems, Aspects Math., vol. E23, Vieweg, 1994, pp. 221-272.
-
8Dai, Y.-J., M. Shoji, M. & Urakawa, H., Harmonic maps into Lie groups and homogeneous spaces,Differential Geom. Appl., 7(1997), 143-160.
-
9Dorfrneister, J., Pedit, F. & Wu, H., Weierstrass type representation of harmonic maps into symmetric spaces, Comm. Anal. Geom., 7(1998), 633-668.
-
10Góes, C. C. & Simoes, P. A. Q., The generalized Gauss map of minimal surfaces in Ha and H4, Bol. Soc. Brasil. Mat., 18(1987), 35-47.
-
1Zhonghua HOU,Dan YANG.Minimal Surfaces in a Unit Sphere[J].Journal of Mathematical Research with Applications,2012,32(3):346-354. 被引量:1
-
2杨培中.STUDY ON PARAMETRIC POLYNOMIAL MINIMAL SURFACES[J].Journal of Shanghai Jiaotong university(Science),1997,2(1):5-10.
-
3聂智.Finsler空间中的Laplace算子及其性质[J].大学数学,2004,20(4):52-58.
-
4杨琴,孙振祖.曲面上测地线集合的测度与直线汇的Cartan测度[J].西北师范大学学报(自然科学版),2015,51(5):27-28. 被引量:1
-
5徐振锋,刘尔烈.关于добронравов约束的性质和该约束作用下的质点运动[J].北京理工大学学报,1996,16(S1):105-108. 被引量:3
-
6Joe S.Wang.DEGREE 3 ALGEBRAIC MINIMAL SURFACES IN THE 3-SPHERE[J].Acta Mathematica Scientia,2012,32(6):2065-2084. 被引量:1
-
7Zhong Hua HOU Zhan Chang ZHANG Chuan Guang LIANG.Construction of Minimal Surfaces with Special Type Ends[J].Journal of Mathematical Research and Exposition,2010,30(6):997-1008.
-
8姜作廉.求解极小值问题的微分几何方法[J].天津工业大学学报,2001,20(4):11-12.
-
9李根全.曲面的摊平问题研究[J].内蒙古民族大学学报(自然科学版),2004,19(6):605-607.
-
10Hu Jicheng (Department of Mathematics, Wuhan University, Wuhan 430072,China).A Kind of integral Representation on Riemannian Manifods[J].Wuhan University Journal of Natural Sciences,1996,1(1):14-16.