期刊文献+

DIFFUSIVE-DISPERSIVE TRAVELING WAVES AND KINETIC RELATIONS IV. COMPRESSIBLE EULER EQUATIONS

DIFFUSIVE-DISPERSIVE TRAVELING WAVES AND KINETIC RELATIONS IV. COMPRESSIBLE EULER EQUATIONS
原文传递
导出
摘要 The authors consider the Euler equations for a compressible fluid in one space dimensionwhen the equation of state of the fluid does not fulfill standard convexity assumptions andviscosity and capillarity effects are taken into account. A typical example of nonconvex con-stitutive equation for fluids is Van der Waals' equation. The first order terms of these partialdifferential equations form a nonlinear system of mixed (hyperbolic-elliptic) type. For a class ofnonconvex equations of state, an existence theorem of traveling waves solutions with arbitrarylarge amplitude is established here. The authors distinguish between classical (compressive) andnonclassical (undercompressive) traveling waves. The latter do not fulfill Lax shock inequali-ties, and are characterized by the so-called kinetic relation, whose properties are investigatedin this paper.
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2003年第1期17-34,共18页 数学年刊(B辑英文版)
关键词 Elasto dynamics Phase transitions Hyperbolic conservation law DIFFUSION DISPERSION Shock wave Undercompressive Entropy inequality Kinetic relation 可压缩Euler方程 Van-derWaals方程 凸性 行波解 Lax激波不等式 弹性动力学 相变 扩散-分散模型 双曲守恒律 轨迹
  • 相关文献

参考文献21

  • 1Abeyaratne, R. & Knowles, J. K., Kinetic relations and the propagation of phase boundaries in solids,Arch. Rational Mech. Anal., 114 (1991), 119-154.
  • 2Abeyaratne, R. & Knowles, J. K., Implications of viscosity and strain gradient effects for the kinetics of propagating phase boundaries in solids, SIAM J. Appl. Math., 51(1991), 1205-1221.
  • 3Bedjaoui, N. & LeFloch, P. G., Diffusive-dispersive traveling waves and kinetic relations, Ⅲ, An hyperbolic model of nonlinear elastodynamics, Ann. Univ. Ferrara Sc. Mat., 47(2001), 117-144.
  • 4Bedjaoui, N. & LeFloch, P. G., Diffusive-dispersive traveling waves and kinetic relations, I, Nonconvex conservation laws, J. Differential Equations, 178(2002), 574-607.
  • 5Bedjaoui, N. & LeFloch, P. G., Diffusive-dispersive traveling waves and kinetic relations, Ⅱ, An hyperbolic-elliptic model of phase transitions, Proc. Royal Soc. Edinburgh, 133A(2002).
  • 6Gilbard, D., The existence and limit behavior of the one-dimensional shock layer, Amer. J. Math.,7(1951), 256-274.
  • 7Hayes, B. T. & LeFloch, P. G., Nonclassical shocks and kinetic relations: Scalar conservation laws, Arch. Rational Mech. Anal., 139(1997), 1-56.
  • 8Hayes, B. T. & LeFloch, P. G., Nonclassical shocks and kinetic relations: Strictly hyperbolic systems, SIAM J. Math. Anal., 31(2000), 941-991.
  • 9Jacobs, D., McKinney, W. R. & Shearer, M., Traveling wave solutions of the modified Korteweg-deVries Burgers equation, J. Differential Equations, 116(1995), 448-467.
  • 10LeFloch, P. G., Propagating phase boundaries: Formulation of the problem and existence via the Glimm scheme, Arch. Rational Mech. Anal., 123(1993), 153-197.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部