期刊文献+

GEOMETRY OF COMPLETE HYPERSURFACES EVOLVED BY MEAN CURVATURE FLOW 被引量:2

GEOMETRY OF COMPLETE HYPERSURFACES EVOLVED BY MEAN CURVATURE FLOW
原文传递
导出
摘要 Some geometric behaviours of complete solutions to mean curvature flow before the singu-larities occur are studied. The author obtains the estimates of the rate of the distance betweentwo fixed points and the derivatives of the second fundamental form. By use of a new maximumprinciple, some geometric properties at infinity are obtained.
作者 SHENG WEIMIN
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2003年第1期123-132,共10页 数学年刊(B辑英文版)
基金 Project supported by the National Natrual Science Foundation of China (No.10271106) the Natrual Science Foundation of Zhejiang Province, China (No.102033).
关键词 Mean curvature flow Maximum principle Complete hypersurfaces 完全超曲面 平均曲率流 几何 奇异性 不动点 最大值原理 流形 完全解 可变距离 导数估计 渐进体积率
  • 相关文献

参考文献18

  • 1Cao, H. D. & Chow, B., Recent developments on the Ricci flow, Bull. Amer. Math. Soc., 36(1999),59-74.
  • 2Cheeger, J. & Ebin, D., Comparison theorems in Riemannian geometry, North-Holland Publishing Company, Amsterdan, 1975.
  • 3Ecker, K. & Huisken,G., Interior estimates for hypersurfaces moving by mean curvature, Invent, Math.,105(1991), 547-569.
  • 4Hamilton, R. S., Three-manifolds with positive Ricci curvature, J. Differential Geom., 17(1982), 255-306.
  • 5Hamilton, R. S., Four-manifolds with positive curvature operator, J. Differential Geom., 24(1986), 153-179.
  • 6Hamilton,R. S., The Harnack estimate for the Ricci flow, J. Differential Geom., 37(1993), 225-243.
  • 7Hamilton, R. S., Formation of singularities in the Ricci flow, Surveys in Differential Geom., 2(1995),7-136, International Press, Boston.
  • 8Hamilton, R. S., Harnack estimate for the mean curvature flow, J. Differential Geom., 41(1995), 215-226.
  • 9Hamilton, R. S., A compactness property for solutions of the Ricci flow, Amer. J. Math., 117(1995),545-572.
  • 10Hamilton, R. S., Four manifolds with positive isotropic curvature, Comm. Anal. Geom., 5(1997), 1-92.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部