期刊文献+

赤潮异弯藻在铁限制条件下的光谱特性 被引量:14

Spectroscopic properties of Heterosigma akashiwo under iron limitation
下载PDF
导出
摘要 由活体吸收光谱可见 ,赤潮异弯藻在叶绿素c靠近红光区的吸收峰处 ,由铁丰富条件下的 6 32nm向蓝漂移 2nm .由于类胡萝卜素相对于叶绿素a的比值在铁限制的细胞内增大 ,因而受铁限制的细胞活体吸收光谱在 4 80nm左右类胡萝卜素的吸收峰处增加了一个吸收峰 .赤潮异弯藻细胞低温荧光发射光谱在 6 85nm处有一明显的发射峰 ,与铁丰富条件 (10 μmol·L-1)相比 ,缺铁 (5nmol·L-1)和低铁 (10 0nmol·L-1)细胞在 6 85nm处的荧光得率分别升高了 2倍和 1.4倍 .补铁 4 8h后荧光得率则明显降低 ,表明细胞在铁限制条件下存在大量能量耗散 ,降低了细胞光合作用效率 . Room-temperature absorption spectra of H. akashiwo cells under iron limitation showed a chlorophyll c absorption peak at 630 nm, 2 nm blue-shifted from its normal position of 632 nm. Moreover, because of the increase in the relative carotenoid abundance compared to Chl a, there was an extra shoulder peak at 480 nm for the iron-limited cells. Their fluorescence spectra (77 K) have one prominent chlorophyll emission peak at 685 nm. By comparison with Fe-replete cells (10 μmol·L -1), the fluorescence yield from 685 nm band increased by about 2 times in Fe deplete cells (5 nmol·L -1),and about 1.4 times in low iron cells (100 nmol·L -1),respectively. 48 h after Fe addition, the height of 685 nm peak was considerably decreased from that observed in low iron (100 nmol·L -1) and iron deficient (ID) cells before Fe addition,which indicated that there was a significantly higher energy dissipation, and thus,a less effective photosynthesis under the lack of Fe.
出处 《应用生态学报》 CAS CSCD 2003年第7期1181-1184,共4页 Chinese Journal of Applied Ecology
基金 国家重点基础研究发展规划资助项目 ( 2 0 0 1CB40 970 6) .
关键词 赤潮 赤潮异弯藻 铁限制 荧光特性 Red tide, Heterosigma akashiwo, Iron limitation, Fluorescence characteristics
  • 相关文献

参考文献20

  • 1Borowitzka MA, Larkum AW. 1976. Calcification in the green alga Halimeda. II. The exchange of Ca2+ and the occurrence of age gradients in calcification and photosynthesis. J Exp Bot, 27(100) :864 - 878.
  • 2Coale KH, Johnson KS, Fitzwater SE, et al. 1996. A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature, 383(6600) : 495--501.
  • 3Doueette GJ, Harrison PJ. 1991. Aspects of iron and nitrogen nutrition in the red tide dinoflagellate Gymnodinium sanguineum.Mar Biol, 110(2) : 165-173.
  • 4Erdner DL, Anderson DM. 1999. Ferredoxin and flavodoxin as biochemical indicators of iron limitation during open-ocean iron enrichment. Limnol Oceanogr, 44(7) : 1609 - 1615.
  • 5Greene RM, Geider RJ, Falkowski PG. 1991. Effects of iron limitation on photosynthesis in a marine diatom. Limnol Oceanogr, 36(8) : 1772-- 1782.
  • 6Greene RM, Geider RJ, Kolber Z, et al. 1992. Iron-induced changes in light harvesting and photochemical energy conversion processes in eukaryotic marine algae. Plant Physiol, 100(2) : 565-575.
  • 7Henley WJ, Yin Y. 1998. Growth and photosynthesis of marine Synechococcus (Cyanophyceae) under iron stress. J Phycol, 34( 1 ) :94-103.
  • 8Jeffrey SW, Humphrey GF. 1975. New spectrophotometrie equations for determing chlorophylls a, b, c1 and c2 in higher plants, a.gae and natural phytoplankton. Biochem Physiol Pflanxen, 167(2) : 191~ 194.
  • 9Kim YS, Martin DF. 1974. Interrelationship of Peace River parameter as a basis of the iron index: predictive guide to the Florida red tide. Water Res, 8(9) :607-616.
  • 10Krause GH, Weis E. 1991. Chlorophyll fluorescence and photo.synthesis: the basics. Annu Rev Plant Physiol Mol Biol, 42 : 313-349.

同被引文献159

引证文献14

二级引证文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部