期刊文献+

模糊数值函数积分原函数的可导性问题 被引量:4

The Differentiability of Primitives for the Fuzzy-Valued Functions
下载PDF
导出
摘要 基于模糊分析学微分理论的推广和模糊微分方程求解的需要 ,对模糊数值函数积分原函数的可导性问题进行讨论 ,完备模糊数值函数微积分的理论体系。 To meet the need of generalizing fuzzy calculus and solving fuzzy differential equations, the differentiability of the primitives for fuzzy-valued functions is discussed. What is more, by the results of this paper, the theory of the calculus of fuzzy-valued functions is completed.
作者 巩增泰
出处 《模糊系统与数学》 CSCD 2003年第2期48-52,共5页 Fuzzy Systems and Mathematics
基金 国家自然科学基金重点资助项目 (4 0 2 35 0 5 3) 甘肃省自然科学基金资助项目 (ZS0 11- A2 5 - 0 12 - Z) 西北师范大学重点学科基金和科技创新工程资助项目 (NWNU- KJCXGC- 2 12 )
关键词 模糊数值函数 可导性 积分原函数 模糊集 Kaleva积分 几乎处处可导 LEBESGUE测度 Fuzzy-Valued Functions Differentiable Derivatives
  • 相关文献

参考文献12

  • 1吴从炘 马明.模糊分析学基础[M].北京:国防工业出版社,1991..
  • 2Gong Z T,Wu C X. Are the primitives of (K) integrable functions differatiable? [J]. 数学研究与评论(已定稿,待发表).
  • 3Gong Z T,Wu C X. Bounded variation,absolute continuity and absolute integrability for fuzzy-number-valued functions [J]. Fuzzy Sets and Systems. 2002.129:83- 94.
  • 4Wu C X ,Gong Z T. On Henstock integral of interval-valued functions and fuzzy-valued functions [J]. Fuzzy Sets and Systems, 2000,115 : 377 - 391.
  • 5Puri M L,Ralesu D A. Differentials for fuzzy functions [J]. J. Math. Anal. Appl. , 1983,91 : 552- 558.
  • 6Kaleva O. The Cauchy problem for fuzzy differential equations [J]. Fuzzy Sets and Systems, 1990,35:389-396.
  • 7Kaleva O. Fuzzy differential equations [J]. Fuzzy Sets and Systems, 1987,24 : 301 - 317.
  • 8Kaleva O. The calculus of fuzzy valued functions[J]. Appl. Math. Lett. , 1990,3:55-59.
  • 9Seikkala S. On the fuzzy initial value problem[J]. Fuzzy Sets and Systems,1987,24:319-330.
  • 10Wu C X,Song S J,Lee E S. Approximate solutions,existence and uniquenss of the Cauchy problem of fuzzy differential equations [J]. J. Math. Anal. Appl. , 1996,202 : 629 - 644.

共引文献9

同被引文献19

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部