期刊文献+

一种求解高维优化问题的多目标遗传算法及其收敛性分析 被引量:9

A Multi-Objective Genetic Algorithm for High Dimensionality Optimization Problem and Study of Its Convergence Properties
下载PDF
导出
摘要 单纯Pareto遗传算法很难解决目标数目很多的高维多目标优化问题 ,在多个指标之间引入偏好信息 ,提出的多目标遗传算法使进化群体按协调模型进行偏好排序 ,改变了传统的基于Pareto优于关系来比较个体的优劣。另外讨论了算法在满足一定条件下具有全局收敛性 。 Pure Pareto genetic algorithms cannot be expected to perform well on problems that involve many competing objectives By introducing preference information among several goals, a multi objective genetic algorithm is proposed, whose character lies in that evolutionary population is preference ranked based on concordance model The algorithm transforms a normal method with which individuals are ranked by Pareto superior relationship Also, it is proven that the new algorithm can guarantee the convergence towards the global optimum under some condition Mathematics parses of typical computational samples and experiments show that it can achieve good convergent performance and speed
作者 崔逊学
出处 《计算机研究与发展》 EI CSCD 北大核心 2003年第7期901-906,共6页 Journal of Computer Research and Development
基金 南京大学计算机软件新技术国家重点实验室基金
关键词 遗传算法 多目标优化 高维 收敛性 genetic algorithm multi objective optimization high dimensionality convergence properties
  • 相关文献

参考文献9

  • 1C M Fonseca, P J Fleming. An overview of evolutionary algorithms in multiobjective optimization. Evolutionary Computation, 1995, 3(1) : 1--16.
  • 2B Roy. How outranking relation help multiple criteria decision making. In: Cochrane J L, Zeleny M eds. Multiple Criteria Decision Making. South Carolina: University of South Carolina Press, 1973. 179-201.
  • 3D A Van Veldhuizen, G B Lamont. Multiobiective evolutionary algorithm test suites. The 1999 ACM Syrup on Applied Computing, San Antonio, Texas, 1999.
  • 4E Zitzler, L Thiele. Multiobjective evolutionary algorithrns: A comparative case study and the strength pareto approach. IEEE Trans on Evolutionary Computation, 1999, 3(4) : 257--271.
  • 5D H Wolpert, W G Macready. No free lunch theorems for optimizatin. IEEE Trans on Evolutionary Computation, 1997, 1(1): 67-82.
  • 6D A Van Veldhuizen, G B Larnont. Multiobjective evolutionary algorithms: Analyzing the state-of-the-art. IEEE Trans on Evolutionary Computation, 2000, 8(2) : 125--147.
  • 7D A Van Veldhuizen, G B Lamont. Evolutionary computation and convergence to a Pareto front. Late Breaking Papers at the Genetic Programming 1998 Cord, California, 1998.
  • 8Baeck Thomas. Evolutionary Algorithms in Theory and Practice.New York: Oxford University Press, 1996.
  • 9N Srinivas, Deb Kalyanmoy. Multiobjective optimization using nondominated sorting in genetic algorithms. Evolutionary Computation, 1994, 2(3):221--248.

同被引文献63

引证文献9

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部