期刊文献+

基于二进小波的图像去噪技术

Image denoising technique based on dyadic wavelet
下载PDF
导出
摘要 图像在二进小波变换空间的表示是冗余的,同小波级数相比,基于二进小波变换的图像重建对于图像单个小波变换系数的依赖性下降。因此,在相同的误判概率下,基于二进小波变换的图像去噪效果好于基于小波级数变换的图像去噪效果,基于这个思想,将基于小波级数的图像去噪方法推广到基于二进小波变换的图像去噪,实验表明二进小波去噪可以有效地提高信噪比。 Image' s representation in dyadic wavelet domain is very redundant. Compared with wavelet seies reconstruction,image' s dyadic wavelet reconstruction dependency on the individual coefficients in transform domain will be decreased. Therefore,under the same misjudgment probability,image' s denosing efficiency of dyadic wavelet is better than that of wavelet series. Based on this idea, it is extended the image' s wavelet series denosing approaches to the image' dyadic wavelet denoising. Numerical experiments show that the dyadic wavelet denoising can significantly improve the signal-to-nosise rate.
出处 《纺织高校基础科学学报》 CAS 2003年第2期170-174,共5页 Basic Sciences Journal of Textile Universities
基金 陕西省自然科学基金(99C18)
关键词 二进小波变换 图像去噪技术 小波级数变换 信噪比 图像处理 image denoising dyadic wavelet transform threshold estimation
  • 相关文献

参考文献7

  • 1DONOHO D L, JOHNSTONE I M. Ideal spatial adaptation bywavelet shrinkage[J]. Biometrika, 1994,81(2),425-455.
  • 2DONOHO D L, JOHNSTONE I M. Wavelets and optional nonparametric function estimation[R]. Technical Report Dept of Statistics,U C Berkeley, 1990.
  • 3MALLAT S. A theory for multiresolution decomposition: the wavelet represention[J]. IEEE Trans on PAMI, 1989, 11(7):674-693.
  • 4MALLAT S. Multifrequency channel decompositions[J]. IEEE Trans on ASSP, 1989,37(12):2091-2110.
  • 5SAITOH S. Theory of reproducing kernels and its applications[M]. Hardlin England: Longman Scientific & Technical Press, 1988. 1-15.
  • 6DONOHO D L. De-noising via soft-thresholding[J].IEEE Trans on IT, 1992,41(3) :613-627.
  • 7ABRAMOVICH F et al. Wavelet thresholding via a Bayesian approach[J]. J R Statistc Soc,1998, B60:Part 4,725-745.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部