期刊文献+

Stability of Doob-Meyer Decomposition Under Extended Convergence 被引量:1

Stability of Doob-Meyer Decomposition Under Extended Convergence
原文传递
导出
摘要 In what follows, we consider the relation between Aldous's extended convergence and weak convergence of nitrations. We prove that, for a sequence (Xn) of J_t^n)-special semimartingales, with canonical decomposition Xn = Mn + An, if the extended convergence (Xn.Jrn)→ (X,F.) holds with a quasi-left continuous (Ft)-special semimartingale X = M + A, then, under an additional assumption of uniform integrability,we get the convergence in probability under the Skorokhod topology: Mn→M and An→A. In what follows, we consider the relation between Aldous's extended convergence and weak convergence of nitrations. We prove that, for a sequence (Xn) of J_t^n)-special semimartingales, with canonical decomposition Xn = Mn + An, if the extended convergence (Xn.Jrn)→ (X,F.) holds with a quasi-left continuous (Ft)-special semimartingale X = M + A, then, under an additional assumption of uniform integrability,we get the convergence in probability under the Skorokhod topology: Mn→M and An→A.
作者 JeanMémin
机构地区 IRMAR
出处 《Acta Mathematicae Applicatae Sinica》 SCIE CSCD 2003年第2期177-190,共14页 应用数学学报(英文版)
关键词 Extended convergence weak convergence of filtrations special semimartingales Skorokhod topology Extended convergence, weak convergence of filtrations, special semimartingales, Skorokhod topology
  • 相关文献

参考文献15

  • 1Aldous, D. Weak convergence of stochastic processes viewed in the strasbourg manner. Manuscript, (1981).
  • 2Briand, P., Delyon, B., Mémin, J. On the robustness of backward stochastic differential equations. Stoch.Process. and Their Applic., 97(2): 229-253 (2002).
  • 3Coquet, F., Mackevicius, V., Mémin, J. Quelques exemples et contre-exemples de convergences de tribus et de filtrations. Liet. Mat. Rink, 40(3): 295-306 (2000).
  • 4Coquet, F., Mémin, J., Stominski, L. On weak convergence of filtrations. Sem. de Probab., XXXV. Lect.Notes in Matlhs., 1755, 306-329, Springer, 2001.
  • 5Dellacherie, C., Meyer, P.A. Probabilités et potentiel, Tome 2. Hermann, Paris, 1980.
  • 6He, S., Wang, J., Yan, J. Semimartingale theory and stochastic calculus. CRC Press, Beijing, 1992.
  • 7Hoover,D.N.Convergence in distribution and Skorokhod convergence for the general theory of processes.Probab.Theory and Related Fields,89:239-259(1991).
  • 8Jacod, J., Shiryaev A.N. Limit Theorems for Stochastic Processes. Springer-Verlag, Berlin-Heidelberg,1987.
  • 9Jakubowski, A., Mémin, J., Pagbs, G. Convergence en loi des suites d‘intégrales stochastiques sur l‘espace D^1 de Skorokhod. Probab. Theory and Related Fields, 81:111-137 (1989).
  • 10Jakubowski, A., Slominski, L. Extended convergence to continuous in probability processes with independent increments. Probab. Theory and Related Fields, 72:55-82 (1986).

同被引文献1

  • 1Aldous D. Weak convergence for stochastic processes viewed in the Strasbourg manner[M]. London:the Press of Cambridge University, 1978.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部